Sin2x+4=8cosx+sinx
giải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
3.
\(\Leftrightarrow4sinx.cosx-\left(1-2sin^2x\right)=7sinx+2cosx-4\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+2sin^2x-7sinx+3=0\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+\left(sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2cosx+sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\Leftrightarrow...\\2cosx+sinx=3\left(1\right)\end{matrix}\right.\)
Xét (1), do \(2^2+1^2< 3^2\) nên (1) vô nghiệm
i) sin5x + sin8x + sin3x= 0 j) 4cos3x+ \(3\sqrt{2}\).sin2x = 8cosx
a.
\(sin5x+sin3x+sin8x=0\)
\(\Leftrightarrow2sin4x.cosx+2sin4x.cos4x=0\)
\(\Leftrightarrow2sin4x\left(cosx+cos4x\right)=0\)
\(\Leftrightarrow4sin4x.cos\dfrac{5x}{2}cos\dfrac{3x}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos\dfrac{5x}{2}=0\\cos\dfrac{3x}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\\dfrac{5x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{4}\\x=\dfrac{\pi}{5}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
b.
\(\Leftrightarrow4cos^3x+6\sqrt{2}sinx.cosx=8cosx\)
\(\Leftrightarrow2cosx\left(2cos^2x+3\sqrt{2}sinx-4\right)=0\)
\(\Leftrightarrow cosx\left(-2sin^2x+3\sqrt{3}sinx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\sqrt{2}\left(loại\right)\\sinx=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
biến đổi thành tổng biểu thức sau H=8cosx sin2x sin 3x
32, giai
\(4cos^2x+3\sqrt{2}sin2x=8cosx\)
\(sinx+4cosx=2+sin2x\)
\(\left(1-sin2x\right)\left(sinx+cosx\right)=cos2x\)
\(1+sinx+cosx+sin2x+cos2x=0\)
\(sinx+sin2x+sin3x=1+cosx+cos2x\)
\(sin^22x-cos^28x=sin\left(\dfrac{17\pi}{2}+10x\right)\)
Giải pt : 8cosx=\(\dfrac{\sqrt{3}}{sinx}\)+\(\dfrac{1}{cosx}\)
đk \(X\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)
\(8sinx.cos^2x=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow4sin2x.cosx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow4.\dfrac{1}{2}\left(sin3x+sinx\right)=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow2sin3x+2sinx=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow2sin3x=\sqrt{3}cosx-sinx\)
\(\Leftrightarrow sin3x=\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\)
\(\Leftrightarrow sin3x=sin\left(\dfrac{\pi}{3}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{3}-x+k2\pi\\3x=x+\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
Phương trình: (sinx - sin2x)(sinx + sin2x) = sin23x có các nghiệm là:
A.
B.
C.
D.
1> 1 + sinx + cosx + sin2x + cos2x = 0
2> cos2x + 3sin2x + 5 sinx - 3cosx = 3
3> \(\dfrac{\sqrt{2}*(cosx - sinx)}{cotx - 1}\) = \(\dfrac{1}{tanx + cot2x}\)
4> (2cosx - 1)*(2sinx + cosx) = sin2x - sinx
giải ptr
sinx(sin²x+sin2x)+sin2x-cos2x-3(sinx+cosx)=0