Tìm khoảng đơn điệu của hàm số:
y=2x - sin2x
tính đạo hàm của các hàm số sau
a, y=\(-\dfrac{3x^4}{8}+\dfrac{2x^3}{5}-\dfrac{x^2}{2}+5x-2021\)
b, y= \(\sqrt{x^2+4x+5}\)
c, y=\(\sqrt[3]{3x-2}\)
d, y=(2x-1)\(\sqrt{x+2}\)
e, y=\(sin^3\left(\dfrac{\pi}{3}-5x\right)\)
g, y=\(cot^{^4}\left(\dfrac{\pi}{6}-3x\right)\)
Mọi người giúp tôi giải 2 hệ phương trình này với, khó quá làm mãi không ra, hu hu.
\(\begin{cases}2y^3+2x\sqrt{1-x}=\sqrt{1-x}-y\\2x^2+2xy\sqrt{1+x}=y+1\end{cases}\) Đáp án: (x; y)= (\(\cos\frac{3\pi}{10};\sqrt{2}\sin\frac{3\pi}{20}\)
\(\begin{cases}x^3-3x=\sqrt{y+3}\\x^3+2y^2+7\left(2x-y\right)=y^3+5\left(x^2+2\right)\end{cases}\) Đáp án: (x; y)= (2;1) ; (2cos 4pi/7 ; -1+2cos 4pi/7) ; (2cos 4pi/5 ; -1+2cos 4pi/5)
1/Hàm số \(\frac{2x+3\sqrt{\left(x\right)}+1}{\sqrt{x^2-3x+2}}\) có bao nhiêu tiệm cận
2/Tìm tất cả các giá trị của tham số k sao cho pt \(-x^3+3x^2-k=0\) có 3 nghiệm phân biệt
3/ Y=\(\frac{\sqrt{\left(x^2+2x+9\right)}+\sqrt{1-x}}{x}\) có bao nhiêu tiệm cận
4/\(y=\frac{\sqrt{x+2}}{\left(x+3\right)^3\left(x+2\right)}\) có bao nhiêu tiệm cận đứng
Cho 2x-y=2. TÌm Giá trị nhỏ nhất
\(A=\sqrt{x^2+\left(y+1\right)^2}+\sqrt{x^2+\left(y-3\right)^2}\)
xét hàm số
f(x)=\(\sqrt[4]{2x}+2\sqrt[4]{6-x}+\sqrt{2x}+2.\sqrt{6-x}\)
D \(\in\left[0;6\right]\)
f'(x)= \(\frac{1}{2.\left(2x\right)^{\frac{3}{4}}}-\frac{1}{2.\left(6-x\right)^{\frac{3}{4}}}+\frac{1}{\sqrt{2x}}-\frac{1}{\sqrt{6-x}}\)
đặt u=\(\left(2x\right)^{\frac{3}{4}}\) \(\left(u\ge0\right)\), v=\(\left(6-x\right)^{\frac{3}{4}}\) \(\left(v\ge0\right)\)
f'(x)= \(\frac{1}{2}.\frac{\left(v^3-u^3\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\frac{\left(v-u\right).\left(v^2+u.v+u^2\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\left(v-u\right).\left(\frac{v^2+u.v+u^2}{\left(u.v\right)^3}+\frac{1}{u.v}\right)\)
\(=\left(v-u\right).g\left(u,v\right)\) ... với g(u,v) > 0
Vậy f'(x) = [(√(2x) - √(6-x)] .G(x), G(x)>0
f'(x)=0 <=> √(2x) - √(6-x) = 0 <=> x=2
lập bảng biến thiên:
tự vẽ
tính f(0), f(2), f(6)
ta được f(x)=m có 2 nghiệm
<=> f(0) \(\le\)m < f(2)
<=> \(2.6^{\frac{1}{4}}+2\sqrt{6}\le m< 3.2^{\frac{1}{4}}+6\)
giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(\sqrt{x+1}-1\right)\left(\sqrt{y^2+1}+y\right)=\sqrt{x}\\2x^3\left(y^2+1\right)-\left(x+1\right)y=2\end{matrix}\right.\)
\(\frac{5x-13-\sqrt{57+10x-3x^2 }} { \sqrt{x+3}- \sqrt{19-3x}} \ge x^2+2x+9\) giúp mình câu này với ạ
Tìm m để phương trình sau có nghiệm:
\(x^2-2x+m\left(x-4\right)\sqrt{\frac{x+2}{4-x}}+2\sqrt{8+2x-x^2}-14-m=0\)