xét hàm số
f(x)=\(\sqrt[4]{2x}+2\sqrt[4]{6-x}+\sqrt{2x}+2.\sqrt{6-x}\)
D \(\in\left[0;6\right]\)
f'(x)= \(\frac{1}{2.\left(2x\right)^{\frac{3}{4}}}-\frac{1}{2.\left(6-x\right)^{\frac{3}{4}}}+\frac{1}{\sqrt{2x}}-\frac{1}{\sqrt{6-x}}\)
đặt u=\(\left(2x\right)^{\frac{3}{4}}\) \(\left(u\ge0\right)\), v=\(\left(6-x\right)^{\frac{3}{4}}\) \(\left(v\ge0\right)\)
f'(x)= \(\frac{1}{2}.\frac{\left(v^3-u^3\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\frac{\left(v-u\right).\left(v^2+u.v+u^2\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\left(v-u\right).\left(\frac{v^2+u.v+u^2}{\left(u.v\right)^3}+\frac{1}{u.v}\right)\)
\(=\left(v-u\right).g\left(u,v\right)\) ... với g(u,v) > 0
Vậy f'(x) = [(√(2x) - √(6-x)] .G(x), G(x)>0
f'(x)=0 <=> √(2x) - √(6-x) = 0 <=> x=2
lập bảng biến thiên:
tự vẽ
tính f(0), f(2), f(6)
ta được f(x)=m có 2 nghiệm
<=> f(0) \(\le\)m < f(2)
<=> \(2.6^{\frac{1}{4}}+2\sqrt{6}\le m< 3.2^{\frac{1}{4}}+6\)
1/Hàm số \(\frac{2x+3\sqrt{\left(x\right)}+1}{\sqrt{x^2-3x+2}}\) có bao nhiêu tiệm cận
2/Tìm tất cả các giá trị của tham số k sao cho pt \(-x^3+3x^2-k=0\) có 3 nghiệm phân biệt
3/ Y=\(\frac{\sqrt{\left(x^2+2x+9\right)}+\sqrt{1-x}}{x}\) có bao nhiêu tiệm cận
4/\(y=\frac{\sqrt{x+2}}{\left(x+3\right)^3\left(x+2\right)}\) có bao nhiêu tiệm cận đứng
tìm m để phương trình \(7x^3+\left(2m-9\right)x^2-\left(m^2+2m-2\right)x-2=0\) có 3 nghiệm phân biệt
a)tìm m để pt : \(x+\sqrt{4-x^2}+x\sqrt{4-x^2}=m\) có nghiệm
b)tìm m để bpt : \(\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}\)≤\(m^2-m+1\) nghiệm đúng \(\forall x\in\left[-3;6\right]\)
Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định và có \(f’\left(x\right)=2x\left(x^2-4\right)^3\left(x^4+16\right)^2\)
Xác định tấc cả nghiệm thực của phương trình sau: \(2f\left(\frac{1}{4}x^4+x^2-5\right)-3=0\)
a) 0
b) 1
c) 2
d) có ít nhất 3 nghiệm
Biết rằng phương trình \(\sqrt{2-x}+\sqrt{2+x}-\sqrt{4-x^2}=m\) có nghiệm khi m ∈ [a;b] với a, b ∈ R. Tính \(T=\left(a+2\right)\sqrt{2}+b\)
Mọi người giúp tôi giải 2 hệ phương trình này với, khó quá làm mãi không ra, hu hu.
\(\begin{cases}2y^3+2x\sqrt{1-x}=\sqrt{1-x}-y\\2x^2+2xy\sqrt{1+x}=y+1\end{cases}\) Đáp án: (x; y)= (\(\cos\frac{3\pi}{10};\sqrt{2}\sin\frac{3\pi}{20}\)
\(\begin{cases}x^3-3x=\sqrt{y+3}\\x^3+2y^2+7\left(2x-y\right)=y^3+5\left(x^2+2\right)\end{cases}\) Đáp án: (x; y)= (2;1) ; (2cos 4pi/7 ; -1+2cos 4pi/7) ; (2cos 4pi/5 ; -1+2cos 4pi/5)
Tìm m để phương trình \(\sqrt{x+1}+\sqrt{3-x}-\sqrt{\left(x+1\right)\left(3-x\right)}=m\) có nghiệm
Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là
A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)
Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là
A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)
Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0
A. m = 0 B. m = 6 C. m = 2 D. m = 4
Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?
A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8