ĐKXĐ: \(-2\le x\le2\)
Đặt \(\sqrt{2-x}+\sqrt{2+x}=t\Rightarrow2\le t\le2\sqrt{2}\)
\(t^2=4+2\sqrt{4-x^2}\Rightarrow-\sqrt{4-x^2}=\frac{4-t^2}{2}\)
Phương trình trở thành:
\(t+\frac{4-t^2}{2}=m\Leftrightarrow f\left(t\right)=-\frac{1}{2}t^2+t+2=m\)
Xét \(f\left(t\right)\) trên \(\left[2;2\sqrt{2}\right]\)
\(-\frac{b}{2a}=1\notin\left[2;2\sqrt{2}\right]\) ; \(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=2\sqrt{2}-2\)
\(\Rightarrow2\sqrt{2}-2\le m\le2\Rightarrow\left[{}\begin{matrix}a=2\sqrt{2}-2\\b=2\end{matrix}\right.\)
\(\Rightarrow T=6\)