\(\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}\)tớ chưa trình bày được ,giúp mình với!!!
Giải hệ phương trình
\(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
\(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
Dễ thấy y = 0 không phải là nghiệm của hệ.
Xét \(y\ne0\)
\(\Rightarrow\hept{\begin{cases}8x^3y^3+27=18y^3\left(1\right)\\4x^2y^2+6xy=y^3\left(2\right)\end{cases}}\)
Lấy (1) - 18.(2) ta được
\(8x^3y^3-72x^2y^2-108xy+27=0\)
\(\Leftrightarrow\left(2xy+3\right)\left(4x^2y^2-42xy+9\right)=0\)
Đặt \(xy=a\)
\(\Rightarrow\left(2a+3\right)\left(4a^2-42a+9\right)=0\)
Tới đây thì bạn làm tiếp nhé.
1) \(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
2)\(\hept{\begin{cases}x^2y+2x^2+3y=15\\x^4+y^4-2x^2-4y=5\end{cases}}\)
1) ta tìm cách loại bỏ 18y3, vì y=0 không là nghiệm của phương trình (2) tương đương 72x2y2+108xy=18y3
thế 18y3 từ phương trình (1) vào ta được
8x3y3-72x2y2-108xy+27=0
<=> \(xy=\frac{-3}{2}\)hoặc \(xy=\frac{21-9\sqrt{5}}{4}\)hoặc \(xy=\frac{21+9\sqrt{5}}{4}\)
thay vào (1) ta tìm được x,y
=> y=0 (loại) hoặc \(y=\sqrt[3]{\frac{8\left(xy\right)^3+27}{18}}=\pm\frac{3}{2}\left(\sqrt{5}-3\right)\Rightarrow x=\frac{1}{4}\left(3\pm\sqrt{5}\right)\)
vậy hệ đã cho có nghiệm
\(\left(x;y\right)=\left(\frac{1}{4}\left(3-\sqrt{5}\right);-\frac{3}{2}\left(\sqrt{5}-3\right)\right);\left(\frac{1}{4}\left(3+\sqrt{5}\right);\frac{-3}{2}\left(3+\sqrt{5}\right)\right)\)
giải hpt
\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{matrix}\right.\)
Bài 1 :
a)\(\begin{cases} 8x-7y=5\\ 12x+13y=-8 \end{cases} \)
b)\(\begin{cases} 3,3x+4,2y=1\\ 9x+14y=4 \end{cases}\)
c)\(\begin{cases} (x-3)*(2y+5)=(2x+7)*(y-1)\\ (4x+1)*(3y-6)=(6x-1)*(2y+3) \end{cases}\)
\(\left\{{}\begin{cases}8x-7y=5\\12x+13y=-8\end{cases}}\)
\(\Leftrightarrow\) \(\left\{{}\begin{cases}24x-21y=15\\24x+26y=-16\end{cases}}\)
\(\Leftrightarrow\) \(\left\{{}\begin{cases}-47y=31\\24x+36y=-6\end{cases}}\)
\(\Leftrightarrow\) \(\left\{{}\begin{cases}y=-\dfrac{31}{47}\\x=\dfrac{9}{188}\end{cases}}\)
giải hệ phương trình: \(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{matrix}\right.\)
Nhận thấy \(x=0\) ; \(y=0\) ko phải nghiệm của hệ
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)\left(4x^2y^2-6xy+9\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)
Chia vế cho vế:
\(\frac{4x^2y^2-6xy+9}{2x}=18y\Rightarrow4x^2y^2-6xy+9=36xy\)
\(\Rightarrow4x^2y^2-42xy+9=0\)
Nghiệm xấu quá, bạn tự giải nốt :(
Giải hệ phương trình: \(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)^3-18xy\left(2xy+3\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{y^2}{2x}\right)^3-18xy\times\dfrac{y^2}{2x}=18y^3\left(2\right)\\2xy+3=\dfrac{y^2}{2x}\end{matrix}\right.\)
Ta có: \(\left(2\right)\Leftrightarrow y^3\left(\dfrac{y^3}{8x^3}-27\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\left(\text{loại}\right)\\y^3=216x^3\end{matrix}\right.\)
\(\Rightarrow y=6x\). Thay vào (2)
\(\Rightarrow24x^3+6x=36x^2\)
\(\Leftrightarrow6x\left(4x^2-6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\x=\dfrac{3+\sqrt{5}}{4}\left(\text{nhận}\right)\\x=\dfrac{3-\sqrt{5}}{4}\left(\text{nhận}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{9+3\sqrt{5}}{2}\\y=\dfrac{9-3\sqrt{5}}{2}\end{matrix}\right.\left(\text{nhận}\right)\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\dfrac{3+\sqrt{5}}{4};\dfrac{9+3\sqrt{5}}{2}\right);\left(\dfrac{3-\sqrt{5}}{4};\dfrac{9-3\sqrt{5}}{2}\right)\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{matrix}\right.\)
- Với \(y=0\) ko phải nghiệm
- Với \(y\ne0\) hai vế của hệ đều khác 0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)\left(4x^2y^2-6xy+9\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)
Chia vế cho vế:
\(\frac{4x^2y^2-6xy+9}{2x}=18y\Leftrightarrow4x^2y^2-6xy+9=36xy\)
\(\Leftrightarrow4x^2y^2-42xy+9=0\)
Chà nghiệm xấu quá, bạn tự làm tiếp vậy
\(\left\{{}\begin{matrix}8x^3y^3+27=18y^3\\4x^2y+6x=y\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)^3-18xy\left(2xy+3\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\frac{y^2}{2x}\right)^3-18xy.\frac{y^2}{2x}=18y^3\\2xy+3=\frac{y^2}{2x}\end{matrix}\right.\\ Tacó:\left(2\right)\Leftrightarrow y^3\left(\frac{y^3}{8x^3}-27\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}y=0\left(l\right)\\y^3=216x^3\end{matrix}\right.\\ \Leftrightarrow y=6x.Thayvào\left(2\right):\\ \Leftrightarrow24x^3+6x=36x^2\\ \Leftrightarrow6x\left(4x^2-6x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{3+\sqrt{5}}{4}\\x=\frac{3-\sqrt{5}}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}y=\frac{9+3\sqrt{5}}{2}\\y=\frac{9-3\sqrt{5}}{2}\end{matrix}\right.\)
Vậy nghiệm của phương trình là:
\(\left(x;y\right)=\left(\frac{3+\sqrt{5}}{4};\frac{9+3\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{4};\frac{9-3\sqrt{5}}{2}\right)\)
Đồng bào thân thiện đáng yêu cứu toy với :((
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt[3]{\frac{2x+1}{y+2}}+\sqrt[3]{\frac{y+2}{2x+1}}=2\\4x+3y=7\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{x^2+2y+3}+2y-3=0_{ }\\2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\end{cases}^{ }}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{2x-3}=\left(y^2+2016\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{cases}}\)
Cảm ơn mọi người nhé hiuhiu <3
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)