Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đắc Thường
Xem chi tiết
Cow
6 tháng 6 2016 lúc 17:00
I'M SORRY MUCH
TIỂU THƯ ĐANH ĐÁ
8 tháng 6 2016 lúc 20:26

ko biết

Lê Diệu thảo
9 tháng 6 2016 lúc 14:45

không biết 

Lăng
Xem chi tiết
Trần Minh Hoàng
9 tháng 1 2021 lúc 16:32

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

Trần Minh Hoàng
9 tháng 1 2021 lúc 16:41

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

Nguyễn Thị Thanh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 3 2022 lúc 7:53

a: Khi m=2 thì pt sẽ là \(-x-5=0\)

hay x=-5

b: Để phương trình có nghiệm duy nhất thì m-3<>0

hay m<>3

Bách Ngọc
Xem chi tiết
Phạm Thành Nhân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2017 lúc 17:55

Với a = 1, ta có phương trình:  x 3 + a x 2 - 4 x - 4 = 0

⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2  – 4)(x + 1) = 0

⇒ (x + 2)(x – 2)(x + 1) = 0

⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0

      x + 2 = 0 ⇒ x = -2

      x – 2 = 0 ⇒ x = 2

      x + 1 = 0 ⇒ x = -1

Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2017 lúc 8:18

The Moon
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2021 lúc 22:54

Bài 1: 

3x+2y=7

\(\Leftrightarrow3x=7-2y\)

\(\Leftrightarrow x=\dfrac{7-2y}{3}\)

Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)

Lam Phương
Xem chi tiết
HaNa
3 tháng 6 2023 lúc 23:04

\(\Delta'=m^2-m^2+2m-4=2m-4\)

Để phương trình có hai nghiệm thì:

\(2m-4\ge0\Rightarrow m\ge2\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-2m+4\end{matrix}\right.\)

Theo đề: \(\left(x_1+1\right)\left(x_2+1\right)=9\)

\(\Leftrightarrow x_1x_2+x_1+x_2+1=9\)

\(\Leftrightarrow m^2-2m+4+2m=8\)

\(\Leftrightarrow m^2-4=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-2\left(loại\right)\\m=2\left(nhận\right)\end{matrix}\right.\)

Vậy m = 2 là giá trị cần tìm.