Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quách Tiểu Bình
Xem chi tiết
cao thị tâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 20:39

a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có

góc DBA chung

=>ΔAHB đồng dạng với ΔDAB

b: ΔABD vuông tại A có AH vuông góc BD

nên AD^2=DH*BD=DH*AC

cao thị tâm
20 tháng 3 2023 lúc 20:59

k

 

Hà Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 17:26

a: BD=10cm

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

c: Xét ΔABD vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

28 Phạm Quốc Khánh
Xem chi tiết
乇尺尺のレ
5 tháng 5 2023 lúc 17:16

a) Xét ΔHAD và ΔABD ta có:

\(\widehat{D}\) chung

\(\widehat{DAB}=\widehat{DHA}=90^0\)

⇒ΔHAD ∼ ΔABD (g.g)(1)

b) Xét ΔHBA và ΔABD ta có:

\(\widehat{B}\) chung

\(\widehat{AHB}=\widehat{DAB}=90^0\)

→ΔHBA ∼ ΔABD (g.g)(2)

Từ (1) và (2) →ΔHAD∼ΔHBA

\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)

c) Xét ΔABD vuông tại A ta có:

\(BD^2=AB^2+AD^2\)

         \(=8^2+6^2\)

         \(=100\)

\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)

Vì ΔΔHAD ∼ ΔABD (cmt)

\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

乇尺尺のレ
5 tháng 5 2023 lúc 17:25

Hình vẽ:

H 6cm D C A B 8cm

Trang Trần
Xem chi tiết
Lê Hoài Phương
8 tháng 5 2017 lúc 23:08

a. Xét tam giác AHB và tam giác BCD có:

^H=^C (=90)

^ABD = ^BDC ( vị trí so le trong của AB//CD)

--> tg AHB đd tg BCD (g.g)(1)

b. tg BCD có ^C =90

--> BD2-BC2=DC2

-->BD2 = DC2+ BC2

-->BD2= 82 + 62

--> BD = 10 

Từ (1)--> AH/BC = AB/BD

--> AH= BC + AB/BD

--> AH= 6+8/10

--> AH= 1,4(cm)

c. Xét tg ADB và tg HDA có:

^A =^H (=90)

^D chung

--> 2 tg đó bằng nhau

--> AD/HD = DB/DA

--> AD=DH.DB

d.Tự lm nhé. 

Trang Trần
9 tháng 5 2017 lúc 13:29

mk đang cần phần d mà!

Huytd
Xem chi tiết
Lương Đại
8 tháng 4 2022 lúc 10:05

a, Xét ΔHAB và ΔCBD có :

\(\widehat{H}=\widehat{C}=90^0\)

\(\widehat{ABH}=\widehat{BDC}\left(AB//CD;slt\right)\)

\(\Rightarrow\Delta HAB\sim\Delta CBD\left(g-g\right)\)

b, Xét ΔHDA và ΔADB có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{D}:chung\)

\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{HD}{AD}\)

\(\Rightarrow AD^2=HD.BD\)

c, Xét tam giác ABD vuông A theo định lý Pi-ta-go ta được :

\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)

Ta có \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\left(cmt\right)\)

hay \(\dfrac{8}{10}=\dfrac{HD}{8}\)

\(\Rightarrow DH=\dfrac{8.8}{10}=6,4\left(cm\right)\)

Phương Nguyễn 2k7
Xem chi tiết
Uyên trần
21 tháng 3 2021 lúc 18:26

Uyên trần
21 tháng 3 2021 lúc 18:26

Uyên trần
21 tháng 3 2021 lúc 18:26

bùi anh tuấn
Xem chi tiết
laala solami
13 tháng 4 2022 lúc 19:30

lx

Nga Nguyen
13 tháng 4 2022 lúc 19:30

lỗi r bn

Minkk Châu
13 tháng 4 2022 lúc 19:30

lỗi

MaiLinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2021 lúc 23:21

a: Xét ΔABD vuông tại A có 

\(BD^2=AB^2+AD^2\)

nên BD=10(cm)

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA