Cho hình chữ nhật có AB=8cm,BC=6cm.Kẻ AH vuông góc với BD ,H \(\in\) BD
a) CMR: tam giác AHB đồng dạng với tam giác DAB
b) CMR: AD\(^2\) =hd.db
C) tnhs độ dài đoạn thẳng DH
cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ AH vuông góc với đường chéo BD (H thuộc BD).Chứng minh rằng:
a,tam giác AHB đồng dạng tam giác DAB
b,AD2=DH.AC
c,Tính độ dài DH và HB
xin mọi người giúp mình với cảm ơn rất nhiều ạ
cho hình chữ nhật ABCD có AB=8cm,BC=6cm.kẻ AH vuông góc đường chéo BD(H thuộc BD)
chứng minh rằng
a, tam giác AHB đồng dạng tam giác DAB
b,AD2=DH*AC
a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có
góc DBA chung
=>ΔAHB đồng dạng với ΔDAB
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD=DH*AC
cho hình chữ nhật ABCD có AB=8cm ;BC=6cm.Kẻ AH vuống góc với BD.
a, Tính BD? ;
b,CMR:tam giác ADH đồng dạng với tam giác ADB ;
c,CMR:AD2 =DH.DB ;
d,CMR: tam giác AHB đồng dạng với tam giác BCD ;
e, Tính DH?AH?
a: BD=10cm
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
c: Xét ΔABD vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)
Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB( AH vuông góc DB, H thuộc DB)
a) Chứng minh tam giác HAD đồng dạng tam giác ABD
b) Chứng minh AD² = DH.HB
c) Tính độ dài đoạn thẳng AH,DH
Giúp em với
a) Xét ΔHAD và ΔABD ta có:
\(\widehat{D}\) chung
\(\widehat{DAB}=\widehat{DHA}=90^0\)
⇒ΔHAD ∼ ΔABD (g.g)(1)
b) Xét ΔHBA và ΔABD ta có:
\(\widehat{B}\) chung
\(\widehat{AHB}=\widehat{DAB}=90^0\)
→ΔHBA ∼ ΔABD (g.g)(2)
Từ (1) và (2) →ΔHAD∼ΔHBA
\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)
c) Xét ΔABD vuông tại A ta có:
\(BD^2=AB^2+AD^2\)
\(=8^2+6^2\)
\(=100\)
\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)
Vì ΔΔHAD ∼ ΔABD (cmt)
\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
Cho hình chữ nhật ABCD có AB= 8cm, BC= 6cm. Từ A kẻ AH vuông góc vs BD
a, CMR: tam giác AHB đồng dạng vs tam giác BCD
b, Tính độ dài đoạn thẳng BD, AH
c, CMR: AD2= DH.DB
d, Tìm vị trí của điểm K trên tia đối của tia CD sao cho: tam giác AHB đồng dạng vs tam giác KBD
a. Xét tam giác AHB và tam giác BCD có:
^H=^C (=90)
^ABD = ^BDC ( vị trí so le trong của AB//CD)
--> tg AHB đd tg BCD (g.g)(1)
b. tg BCD có ^C =90
--> BD2-BC2=DC2
-->BD2 = DC2+ BC2
-->BD2= 82 + 62
--> BD = 10
Từ (1)--> AH/BC = AB/BD
--> AH= BC + AB/BD
--> AH= 6+8/10
--> AH= 1,4(cm)
c. Xét tg ADB và tg HDA có:
^A =^H (=90)
^D chung
--> 2 tg đó bằng nhau
--> AD/HD = DB/DA
--> AD2 =DH.DB
d.Tự lm nhé.
Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của tam giác ADB
a. Chứng minh tam giác AHB tam giác BCD
b. Chứng minh AD2= HD.DB
c. Tính độ dài đoạn thẳng DH
a, Xét ΔHAB và ΔCBD có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(AB//CD;slt\right)\)
\(\Rightarrow\Delta HAB\sim\Delta CBD\left(g-g\right)\)
b, Xét ΔHDA và ΔADB có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{HD}{AD}\)
\(\Rightarrow AD^2=HD.BD\)
c, Xét tam giác ABD vuông A theo định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
Ta có \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\left(cmt\right)\)
hay \(\dfrac{8}{10}=\dfrac{HD}{8}\)
\(\Rightarrow DH=\dfrac{8.8}{10}=6,4\left(cm\right)\)
cho hình chữ nhật abcd có ab=8cm, bc=6cm. vẽ đường cao ah của adb
a, tính db
b, cm tam giác adh đồng dạng tam giác adb
c, cm ad^2 = dh. db
d, cm tam giác ahb đồng dạng tam giác bcd
e, tính độ dài đoạn thẳng dh, ah
Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của tam giác ADB.
a) Tinh độ dài DB
b) Chứng minh: tam giác AHB đồng dạng tam giác BCD
c) Chứng minh: AD^2 = DH .DB
d) Tính độ dài đoạn thẳng DH, AH.
Cho hình chữ nhật ABCD có AB=8cm, BC=6cm .Vẽ đường cao AH của Tam giác ADB.
a, Tính DB
b, CM: Tam giác ADH đồng dạng Tam giác ADB
c, CM: \(AD^2=DH\cdot DB\)
d, CM: Tam giác AHB đồng dạng Tam giác BCD
e, Tinh độ dài đoạn thẳng DH, AH
a: Xét ΔABD vuông tại A có
\(BD^2=AB^2+AD^2\)
nên BD=10(cm)
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA