-3x-2/3=-6/7-x
Đạo hàm của hàm số \(y=\left(-x^2+3x+7\right)^7\) là:
A. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
B. \(y'=7\left(-x^2+3x+7\right)^6\)
C. \(y'=\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
D. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
1 Tìm x:
a) 5.(1-x)-6.(1+x)=7.(3-x)
b) 2.(x+5)-3.(3x+7)=6.(1-x)+8x
c) x-2+3.(x-4)=5.(x-6)+7
d) x+2+3.(1-x)-5.(2-x)=6.(1-x)+7.(3x)
giờ làm vẫn đc đúng ko bạn
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Bài3
a, (3x -6 ) + 3 = 32
b, (3x-6) - 3 = 32
c, (3x-6) . 3 = 32
d, (3x-6) ; 3 = 32
e, (3x- 24) . 73 = 2. 74
f | x | = |-7|
g, | x +1| = 2
h, | x+1 | = 3 và x+1 < 0
i,x = | -2 | =0
j, 4 . ( 3x -4 ) -2 = 18
(3x-6)+3=3^2
3x+3=3^2
3*(x+1)=9
x+1=9:3
x+1=3
x=3-1=2
d) (3x – 5)(7 – 5x) – (5x + 2)(2 – 3x) = 4 g) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) =0 j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3 k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8 m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
M) (2x+3)(-x+7)=0
rút gọn rồi tính giá trị biểu thức sau
a) (3x-2)2+2x(3x-2)x(3x+2)+(3x+2)2tại x =\(\dfrac{-1}{3}\)
b) (x+y-7)2 -2x(x+y-7)x(y-6)+(y+6) tại x=101
c) 4x2 -20x+27 tại x = 52,5
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
tìm x
1}x+3[x-1]=4 2}2[x-3]+5=3
3}x[x-2]-x^2=-2 4}x^2-x[x+2]=6 5}3x[x-5]-3x[x-3]=6
6}3[x^2-2x+1]+x[2-3x]=7
1, x+3(x-1)=4 => 4x-3=4 => 4x=7 => x=\(\dfrac{7}{4}\)
2, 2.(x-3)+5=3 => 2x-6+5=3 =>2x=4 => x=2
3, x.(x-2)-\(x^2\)=-2 => \(x^2-2x-x^2\)=-2 => -2x=-2 => x=1
4, \(x^2-x.\left(x+2\right)=6\)=> \(x^2-x^2-2x=6\)=> -2x=6 => x=-3
5,3x.(x-5)-3x.(x-3)=6 => \(3x^2-15x-3x^2+9x=6\) => -6x=6 => x=-1
6, 3.(\(x^2-2x+1\))+x.(2-3x)=7 => \(3x^2-6x+3+2x-3x^2=7\)=> -4x=4=> x=-1