Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

nguyen phuong vy
Xem chi tiết
2611
6 tháng 5 2022 lúc 19:44

`A(x)=x^2-x-2`

`A(x)=x^2-2.x. 1/2+1/4-9/4`

`A(x)=(x-1/2)^2-9/4`

 Vì `(x-1/2)^2 >= 0 AA x`

 `=>(x-1/2)^2-9/4 >= -9/4 AA x`

Hay `A(x) >= -9/4 AA x`

Dấu "`=`" xảy ra `<=>(x-1/2)^2=0=>x-1/2=0=>x=1/2`

Vậy `GTN N` của `A(x)` là: `-9/4` khi `x=1/2`

Quyền Hữu
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 13:30

\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m^2-4m^2+4m-4=4m-4

Để (1) có 2 nghiệm thì 4m-4>=0

=>m>=1

 

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

dảke
Xem chi tiết
Vãn Ninh 4.0
Xem chi tiết

\(Dựa.vào.ĐL.Viet:\\ \left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1.x_2=\dfrac{c}{a}=2m-4\end{matrix}\right.\\ x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-4.\left(m-2\right)=4m^2-8m-4m+12\\ =4.\left(m^2-3m+3\right)=4\left(m^2-3m+\dfrac{9}{4}\right)-3\ge-3\forall m\in R\\ Vậy.GTNN.của.A.là:-3\left(khi:m=\dfrac{3}{2}\right)\)

nglan
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2023 lúc 14:55

loading...  loading...  

Phạm Phương Linh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 17:41

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

Nguyễn Thị Kim Huệ
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 9 2021 lúc 15:24

\(B=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-16\ge-16\)

Dấu \("="\Leftrightarrow x^2+x+2=0\Leftrightarrow x\in\varnothing\left(x^2+x+2>0\right)\)

Vậy dấu \("="\) ko xảy ra nên sẽ ko tính đc GTNN

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 16:16

\(B=\left(x^2+x\right)^2+4\left(x^2+x^2\right)-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16\)

\(=\left(x^2+x+2\right)^2-16\)

\(=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]^2-16\)

Do \(\left(x+\dfrac{1}{2}\right)^2\ge0;\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(\Rightarrow B\ge\left(\dfrac{7}{4}\right)^2-16=-\dfrac{207}{16}\)

\(B_{min}=-\dfrac{207}{16}\) khi \(x=-\dfrac{1}{2}\)

Phúc Nguyễn
Xem chi tiết
Phú Quý Lê Tăng
21 tháng 5 2018 lúc 17:28

\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.