Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Huyền
Xem chi tiết
Cam Tu
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 10 2021 lúc 14:24

\(a,A=\dfrac{x+1+2-2x+5-x}{\left(1-x\right)\left(x+1\right)}\cdot\dfrac{\left(1-x\right)\left(x+1\right)}{2x-1}\left(x\ne1;x\ne-1;x\ne\dfrac{1}{2}\right)\\ A=\dfrac{8-2x}{2x-1}\\ b,A>0\Leftrightarrow\dfrac{8-2x}{2x-1}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-2x>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-2x< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 4\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x< 4\\x\in\varnothing\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x< 4\)

Lê Quỳnh Chi Phạm
Xem chi tiết
Toru
11 tháng 10 2023 lúc 18:37

\(a,A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(đk:x\ge0;x\ne1\right)\)

\(=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{3x+2\sqrt{x}+1-3x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2}{\sqrt{x}-1}\)

\(---\)

\(b,A< 0\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

Kết hợp với điều kiện của \(x\), ta được:

\(0\le x< 1\)

Vậy: ...

\(Toru\)

HT.Phong (9A5)
11 tháng 10 2023 lúc 18:37

a) \(A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2}{\sqrt{x}-1}\)

b) \(A< 0\) khi

\(\dfrac{2}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

Kết hợp với đk:

\(0\le x< 1\)

phamthiminhanh
Xem chi tiết
Hồng Nhan
17 tháng 4 2021 lúc 18:44

undefined

Anh Quynh
Xem chi tiết
Harry Poter
12 tháng 8 2021 lúc 12:07

a) \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(A=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right].\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) \(\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-\sqrt{x}=3\)

\(\Leftrightarrow2\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\)

\(\Rightarrow x=\dfrac{9}{4}\)

Somegai
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2022 lúc 10:52

a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)

\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)

b: Ta có: |2x-1|=5

=>2x-1=5 hoặc 2x-1=-5

=>x=-2

Thay x=-2 vào A, ta được:

\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)

c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)

=>x+3=24x+12

=>24x+12=x+3

=>23x=-9

hay x=-9/23

d: Để A<0 thì x+3<0

hay x<-3

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 22:28

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{2}{\sqrt{x}+3}\)

b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{4-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow1-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 1\)

hay x<1

Kết hợp ĐKXĐ, ta được: 0<x<1

Minh Bình
Xem chi tiết
Vũ Thị Thảo
Xem chi tiết
Trần Tuấn Hoàng
17 tháng 4 2022 lúc 20:25

B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)

\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)

b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)

\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))

\(\Leftrightarrow x>-1\).

-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).