cho biểu thức: A=\(\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
a)rút gọn A
b)tìm x để A=1
cho biểu thức: A=\(\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
a)rút gọn A
b)tìm x để A=1
Cho các biểu thức:\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2};B=\dfrac{x-3}{x+1}\) \(\left(0\le x,x\ne9\right)\) a, Rút gọn A
b, Với P = A.B ,tìm x để P = \(\dfrac{9}{2}\)
c, Tìm x để B < 1
d, Tìm số nguyên x để P là số nguyên
cho biểu thức A=\(\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{4x}{2-2x^2}\right):\left(x+1\right)\)
a.tìm ĐKXĐ và rút gọn A
b.tìm x nguyên để A có giá trị nguyên
cho P=\(\left(\dfrac{x+2}{2x-4}+\dfrac{x-2}{2x+4}+\dfrac{-8}{x^2-4}\right):\dfrac{4}{x-2}\)
A) Tìm điều kiện của x để P xác định
B) Rút gọn biểu thức P
C) tính giá trị của biểu thức P khi x=\(-1\dfrac{1}{3}\)
Cho biểu thức: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}-\dfrac{2-x^2}{x-x^2}\right)\). Tìm x để A<0
Rút gọn \(A=\left(\dfrac{x^2+1}{2x}-1\right)\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\)
TÌm x để A=0
1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
B1: A=\(\left(\dfrac{x}{x-1}-\dfrac{1}{x^2-x}\right):\left(\dfrac{1}{x+1}+\dfrac{2}{x^2-1}\right)\)
a. Rút gọn
b. Tính A tại x = \(\dfrac{1}{2}\)
B2: A= \(\left(\dfrac{x-y}{x+y}-\dfrac{x+y}{x-y}\right):\dfrac{-4y^2}{x-y}\)
a. Rút gọn
b. Tính A biết x=\(\dfrac{1}{4}y\)
B3: A=\(\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{x^2-4}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a. Rút gọn
b. Tìm x để A= -1