Tính diện tích hình phẳng giới hạn bởi hai đường
y = (e+1)x. Và y = (1+ex)x
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = e - x , x = 1 .
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích S của hình phẳng giới hạn bởi các đường y = ex, y = e–x, x = 1.
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích hình phẳng giới hạn bởi các đường y = ( e + 1 ) x y = ( e x + 1 ) x Chọn đáp án đúng:
Hoành độ giao điểm của hai đường là nghiệm của phương trình
Chọn D.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x - e - x , trục hoành, đường thẳng x = -1 và đường thẳng x = 1.
A. e + 1 e - 2
B. 0
C. 2 e + 1 e - 2
D. e + 1 e
Diện tích hình phẳng giới hạn bởi y = ( e + 1 ) x và y = ( 1 + e x ) x là:
A. 1 - e 2
B. e 2 - 1
C. e - 1
D. 1 - e
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 và x = 1.
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Đáp án A
Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2
Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .
Diện tích hình phẳng giới hạn bởi các đường y = e x ; y = 1 v à x = 1 là
A. e - 2.
B. e.
C. e + 1.
D. 1 - e.
Chọn A.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = ex và trục y = 1 là: ex = 1 ⇔ x = 0
Do đó:
Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = e x ; y = 2 và đường thẳng x =1
A.e-2
B.2ln2-4
C.e+2ln2
D.e+2ln2-4
Chọn D.
Giải PT : e x = 2 ⇔ x = ln 2 Diện tích hình phẳng cần tìm là :
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 , x = 1 .
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Diện tích hình phẳng được giới hạn bởi đồ thi hàm số y = e x - e - x trục hoành, trục tung và đường thẳng x = - 1 , x = 1 là:
A. 2 e + 1 e - 2
B. 2 e - 1 e - 2
C. 2 e + 1 e + 2
D. 2 e - 1 e - 2