Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
doraemon
Xem chi tiết
doraemon
17 tháng 4 2022 lúc 10:17

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Đàm Nam Phong
17 tháng 4 2022 lúc 10:32

ko biết !!!

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 16:50

\(f\left(0\right)=2\Rightarrow c=2\)

\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)

\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)

\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)

\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Vịt Biết Gáyyy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 21:56

\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)

Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)

\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)

\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)

\(\Leftrightarrow a^2=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)

Vậy \(a=1\)

Pham Tien Dat
Xem chi tiết
Rin Huỳnh
2 tháng 10 2021 lúc 22:25

Gửi bạnundefinedundefined

ĐỖ THỊ THANH HẬU
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 2020 lúc 17:32

\(f\left(-x\right)=\left|-sinx-cosx\right|-\left|-sinx+cosx\right|\)

\(=\left|sinx+cosx\right|-\left|sinx-cosx\right|=-f\left(x\right)\)

\(\Rightarrow f\left(x\right)+f\left(-x\right)=0\)

\(\Rightarrow T=f\left(-\pi\right)+f\left(\pi\right)+f\left(-\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(\frac{\pi}{n}\right)+f\left(0\right)\)

\(=0+0+...+0+f\left(0\right)=f\left(0\right)\)

\(=1-1=0\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
14 tháng 4 2017 lúc 16:59

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

Toàn Nguyễn Khánh
Xem chi tiết
híp
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Trần Thị Loan
16 tháng 7 2015 lúc 11:02

\(f\left(\frac{5}{7}\right)=f\left(\frac{1}{\frac{7}{5}}\right)=\frac{1}{\left(\frac{7}{5}\right)^2}.f\left(\frac{7}{5}\right)=\frac{25}{49}.f\left(1+\frac{2}{5}\right)=\frac{25}{49}.\left(f\left(1\right)+f\left(\frac{2}{5}\right)\right)\)

Ta có : \(f\left(\frac{2}{5}\right)=f\left(\frac{1}{5}+\frac{1}{5}\right)=f\left(\frac{1}{5}\right)+f\left(\frac{1}{5}\right)=2.f\left(\frac{1}{5}\right)=2.\frac{1}{5^2}.f\left(5\right)=\frac{2}{25}.f\left(1+1+1+1+1\right)\)

\(=\frac{2}{25}.\left(f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)\right)=\frac{2}{25}.5=\frac{2}{5}\)

Vậy \(f\left(\frac{5}{7}\right)=\frac{49}{25}.\left(1+\frac{2}{5}\right)=\frac{25}{49}.\frac{7}{5}=\frac{5}{7}\)

 

Nguyễn Huệ
Xem chi tiết
Nguyễn Huệ
8 tháng 3 2022 lúc 17:39

xét tính liên tục của hs 
ai giúp mình với 

 

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 17:43

Xét tính liên tục tại \(x=0\) hay xét trên toàn miền R em nhỉ?

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 21:40

\(sinx=0\Rightarrow x=k\pi\)

\(\Rightarrow\) Hàm liên tục tại mọi điểm thỏa mãn \(x\ne k\pi\)

Hàm gián đoạn tại mọi điểm \(\left\{{}\begin{matrix}x=k\pi\\k\ne0\end{matrix}\right.\)

Xét tại \(x=0\):

\(\lim\limits_{x\rightarrow0}\dfrac{1-\sqrt[3]{cosx}}{sin^2x}=\lim\limits_{x\rightarrow0}\dfrac{1-cosx}{sin^2x\left(1+\sqrt[3]{cosx}+\sqrt[3]{cos^2x}\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{2sin^2\dfrac{x}{2}}{4sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}\left(1+\sqrt[3]{cosx}+\sqrt[3]{cos^2x}\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{1}{2cos^2\dfrac{x}{2}\left(1+\sqrt[3]{cosx}+\sqrt[3]{cos^2x}\right)}=\dfrac{1}{2.1.\left(1+1+1\right)}=\dfrac{1}{6}\ne f\left(0\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Cả 4 đáp án đều sai