Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thái Dương
Xem chi tiết
Nguyễn Hòa Bình
25 tháng 3 2016 lúc 3:42

\(\Delta=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)

\(r=\left|\Delta'\right|=\sqrt{63^2-16^2}=65\)

Phương trình \(y^2=-63-16i\)

Có nghiệm \(y_{1,2}=\pm\sqrt{\frac{65-63}{2}}+i\sqrt{\frac{65+63}{2}}=\pm\left(1-8i\right)\)

Kéo theo

\(z_{1,2}=4-4i\pm\left(1-8i\right)\)

Do đó \(z_1=5-12i,z_2=3+4i\)

Ta cso thể dùng cách khác để giải phương trình bậc hai trên :

\(\Delta'=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)

Tìm căn bậc hai của -63-16i, tức là tìm \(z=x+yi,z^2=-63-16i\)

\(\Rightarrow x^2-y^2+2xyi=-63-16i\)

\(\Rightarrow\begin{cases}x^2-y^2=-63\\xy=-8\end{cases}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm8\end{cases}\)

\(\Delta'\)

có 2 căn bậc 2 là \(1-8i,-1+8i\)

Phương trình có hai nghiệm 

\(z_1=4\left(1-i\right)+\left(1-8i\right)=5-12i\)

\(z_2=4\left(1-i\right)-\left(1-8i\right)=3+4i\)

Blue Moon
Xem chi tiết
alibaba nguyễn
22 tháng 11 2018 lúc 16:06

\(\hept{\begin{cases}x+y+z=0\left(1\right)\\2x+3y+z=0\left(2\right)\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\left(3\right)\end{cases}}\)

Từ (1), (2) suy ra:

\(\hept{\begin{cases}x=-2y\\z=y\end{cases}}\)

Thê vô (3) ta được:

\(\left(-2y+1\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

\(\Leftrightarrow y^3+14y^2+27y+6=0\)

\(\Leftrightarrow\left(y+2\right)\left(y^2+12y+3\right)=0\)

lê duy mạnh
1 tháng 9 2019 lúc 15:12

th1 y=z=-2

x=4

th2 y=z=-6+ căn 33

x=12-căn 33

Sách Giáo Khoa
Xem chi tiết
Phan Thùy Linh
1 tháng 4 2017 lúc 23:39

a) (3 + 2i)z – (4 + 7i) = 2 – 5i

⇔(3+2i)z=6+2i

<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i

b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z

⇔(7−3i−5+4i)=−2−3i

⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)

c) z2 – 2z + 13 = 0

⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i

d) z4 – z2 – 6 = 0

⇔ (z2 – 3)(z2 + 2) = 0

⇔ z ∈ { √3, - √3, √2i, - √2i}







CÔNG CHÚA THẤT LẠC
9 tháng 4 2017 lúc 10:21

Giải bài 15 trang 148 sgk Giải tích 12 | Để học tốt Toán 12

Uchiha Itachi
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 18:10

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

Nguyễn Mary
Xem chi tiết
Yến Hoàng
Xem chi tiết
Nhóc vậy
Xem chi tiết
Trần Thị Lan Anh
11 tháng 12 2017 lúc 18:43

em vẫn chưa lp 9 nên e ko trả lời đk,em xin lỗi kk

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2019 lúc 12:46

Chọn  D.

Đặt t = z + 3 - i. Phương trình đã cho trở thành: t2 - 6t + 13 = 0

Suy ra :  t = 3 + 2i hoặc t = 3 - 2i

Với t = 3+ 2i thì z + 3 – I = 3 + 2i hay z = 3i

Với t = 3- 2i thì z + 3 – I = 3 -2i hay z = - i

Sách Giáo Khoa
Xem chi tiết
Nguyễn Bảo Trung
1 tháng 4 2017 lúc 19:24

a) Ta có (3 - 2i)z + (4 + 5i) = 7 + 3i <=> (3 - 2i)z = 7 + 3i - 4 - 5i

<=> z = <=> z = 1. Vậy z = 1.

b) Ta có (1 + 3i)z - (2 + 5i) = (2 + i)z <=> (1 + 3i)z -(2 + i)z = (2 + 5i)

<=> (1 + 3i - 2 - i)z = 2 + 5i <=> (-1 + 2i)z = 2 + 5i

z =

Vậy z =

c) Ta có + (2 - 3i) = 5 - 2i <=> = 5 - 2i - 2 + 3i

<=> z = (3 + i)(4 - 3i) <=> z = 12 + 3 + (-9 + 4)i <=> z = 15 -5i