cho tam giác ABC với 3 đường trung tuyến AD , BE , CF . Chứng minh rằng : vector BC nhân vector AD + vector CA nhân vector BE + vector AB nhân vector CF = 0
1.Cho tam giác ABC với BC=a, CA=b, AB=c. Tìm điểm I sao cho: a nhân vector IA + b nhân vector IB +c nhân vector IC= vector 0.
2.Cho tam giác ABC, đường tròn (I) nội tiếp tam giác tiếp xúc với các cạnh BC, CA, AB lần lượt tại M, N, P. Chứng minh rằng:
a nhân vector IM +b nhân vector IN +c nhân vector IP=vector 0.
Cứu em với mai kiểm tra rồi.
cho 4 điểm bất kỳ A , B , C ,D .Chứng minh rằng : vector DA nhân vector BC + vector DB nhân vector CA + vector DC nhân vector AB = 0 . Từ đó suy ra một cách chứng minh định lý : '' 3 đường cao của một tam giác đồng quy''
cho 4 điểm bất kỳ A , B , C ,D .Chứng minh rằng : vector DA nhân vector BC + vector DB nhân vector CA + vector DC nhân vector AB = 0
gọi M và N lần lượt là trung điểm các đoạn thẳng AB và CD . Chứng minh rằng: 2 nhân vector MN = vector AC + vector BD = vector AD + vector BC
Xét ΔMDC có N là trung điểm của DC
nên \(2\cdot\overrightarrow{MN}=\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{MB}+\overrightarrow{BC}=\overrightarrow{AD}+\overrightarrow{BC}\)
cho tam giác ABC . Gọi M là trung điểm AB , N là trung điểm AC sao cho NA = 2NC . Gọi K là trung điểm MN : a) chứng minh rằng : vector BC = \(\frac{3}{2}\) nhân vector AN - 2 nhân vector AM ; b) chứng minh rằng : vector AK = \(\frac{1}{4}\) nhân vector AB + \(\frac{1}{3}\) nhân vector AC
a) \(\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=-2\overrightarrow{AM}+\frac{3}{2}\overrightarrow{AN}\)
b) Kẻ hình bình hành AMPN, ta có:
\(\overrightarrow{AK}=\frac{1}{2}\overrightarrow{AP}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\right)=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
cho hình thoi ABCD cạnh bằng a , tâm O , góc BAD = 60 : a) chứng minh rằng : vector AB + 2 vector AO + vector AD = 2 vector AC . Tính giá trị tuyệt đối của ( vector AB + 2 vector AO + vector AD ) theo a ; b) gọi G là trọng tâm tam giác ACD . Chứng minh rằng : vector BA + vector BC + vector BD = 2 vector BG
cho 2 điểm M , N nằm trên đường tròn đường kính AB = 2R . Gọi I là giao điểm của 2 đường thẳng AM và BN : a) chứng minh rằng : vector AM nhân AI = vector AB nhân vector AI ; vector BN nhân vector BI = vector BA nhân vector BI ; b) tính vector AM nhân vector AI + vector BA nhân vector BI theo R
cho tam giác ABC : a)tìm các điểm M và N sao cho vector MA - vector MB + vector MC = vector 0 và 2 vector NA + vector NB + vector NC = vector 0
b) với các điểm M,N ở câu a), tìm các số p và q sao cho vector MN = p nhân vector AB + q nhân vector AC
a:
b: \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}\)
\(=\overrightarrow{CB}+\dfrac{1}{2}\cdot\overrightarrow{AK}\)
\(=\overrightarrow{CA}+\overrightarrow{AB}+\dfrac{1}{2}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\overrightarrow{AC}+\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
\(=\dfrac{5}{4}\cdot\overrightarrow{AB}-\dfrac{3}{4}\cdot\overrightarrow{AC}\)
Cho 6điểm A,B,C,D,E,F .CMR
A, vector AD + vector BE + vectơ CF = vector AE+ Vectơ BF+ Vectơ CD = vector AF + VECTO BD + vectơ CE