tính đạo hàm
\(y=\left(sinx+cosx\right)e^x\)
Đạo hàm của hàm số \(y=\left(ax+b\right)sinx+\left(cx+d\right)cosx\). tinh \(a+b+2c+d\)?
Hở, là sao nhỉ? Đạo hàm xong nhưng tính a+b+2c+d kiểu gì?
TÍNH ĐẠO HÀM :
\(y=\left(1-3x\right).\sqrt{x-3}\)
\(y=\sqrt{2x+1}+\dfrac{1}{x+1}\)
\(y=\sqrt{\dfrac{1-x}{1+x}}\)
\(y=cos5x.co7x\)
\(y=cosx.sin^2x\)
\(y=tan^42x\)
\(y=\dfrac{2x}{sinx+cosx}\)
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN
1/ \(y'=\left(1-3x\right)'\sqrt{x-3}+\left(1-3x\right)\left(\sqrt{x-3}\right)'=-3\sqrt{x-3}+\dfrac{1}{2\sqrt{x-3}}\left(1-3x\right)\)
2/ \(y'=\dfrac{1}{\sqrt{2x+1}}-\dfrac{1}{\left(x+1\right)^2}\)
3/ \(y'=\dfrac{1}{2}.\sqrt{\dfrac{1+x}{1-x}}.\left(\dfrac{1-x}{1+x}\right)'=\dfrac{1}{2}\sqrt{\dfrac{1+x}{1-x}}.\dfrac{-2}{\left(1+x\right)^2}=-\sqrt{\dfrac{1+x}{1-x}}.\dfrac{1}{\left(1+x\right)^2}\)
4/ \(y'=\left(\cos5x\right)'.\cos7x+\cos5x.\left(\cos7x\right)'=-5\sin5x.\cos7x-7\cos5x\sin7x\)
5/ \(y'=\left(\cos x\right)'\sin^2x+\cos x\left(\sin^2x\right)'=-\sin^3x+2\sin x.\cos^2x\)
6/ \(y'=\left(\tan^42x\right)'=4.\tan^32x.\dfrac{2}{\cos^22x}\)
7/ \(y'=\dfrac{2\sin x+2\cos x-2x.\cos x+2x\sin x}{\left(\sin x+\cos x\right)^2}\)
Ờm, bạn tự rút gọn nhé :) Mình đang hơi lười :b
cho hàm số \(f\left(x\right)=\dfrac{\left(sinx+2x\right)\left[\left(x^2+1\right)sinx-x\left(cosx+2\right)\right]}{\left(cosx+2\right)^2\sqrt{\left(x^2+1\right)^3}}\). Biết F(x) là một nguyên hàm của f(x) và F(0)=2021. Tính giá trị biểu thức T=F(-1) + F(1).
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
cho hàm số f(x) = \(\dfrac{\left(sinx+2x\right)\left[\left(x^2+1\right)sinx-x\left(cosx+2\right)\right]}{\left(cosx+2\right)^2\sqrt{\left(X^2+1\right)^3}}\). Biết F(x) là một nguyên hàm của f(x) và F(0)=2021. Tính giá trị biểu thức T=F(-1) + F(1).
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Chứng minh các hàm số sau tuần hoàn, tìm chu kì T:
\(a,y=\left|sinx\right|\)
\(b,y=cosx+sinx\)
\(c,sin3x\)
\(d,y=\left|cosx\right|\)
Tính đạo hàm của hàm số sau y = sin x + cos x sin x − cos x
A. − 2 sin x ( sin x − cos x ) 2
B. 2 c osx ( sin x − cos x ) 2
C. − 2 ( sin x − cos x ) 2
D. − 2 s inx + c osx ( sin x − cos x ) 2
y ' = sin x + cos x sin x − cos x ' = ( sin x + cos x ) ' . ( sin x − cos x ) − ( sin x − cos x ) ' . ( sin x + cos x ) ( sin x − cos x ) 2 = ( cos x − sin x ) ( sin x − cos x ) − ( cos x + sin x ) ( sin x + cos x ) ( sin x − cos x ) 2 = − ( cos x − sin x ) ( − sin x + cos x ) − ( sin x + cos x ) ( sin x + cos x ) ( sin x − cos x ) 2
= − ( cos x − sin x ) 2 − ( sin x + cos x ) 2 ( sin x − cos x ) 2 = − ( cos 2 x − 2 cos x sin x + sin 2 x ) − ( sin 2 x + 2 sin x cos x + cos 2 x ) ( sin x − cos x ) 2 = − ( 1 − 2 cos x sin x ) − ( 1 + 2 sin x cos x ) ( sin x − cos x ) 2
= − 2 ( sin x − cos x ) 2
Chọn đáp án C
Tính đạo hàm của hàm số y = sin(cosx) + cos(sinx)
A: sin(2cosx)
B: cos(xsinx)
C: cos(2sinx)
D: -sin(x+cosx)
Chọn D.
Bước đầu tiên sử dụng đạo hàm tổng, sau đó sử dụng (sin u)’, (cos u)’.
y' = (sin(cosx))’ + (cos(sinx))’ = cos(cosx).(cosx)’ – sin(sinx).(sinx)’
= -sinx.cos(cosx) – cosx.sin(sinx) = -(sinx.cos(cosx) + cosx.sin(sinx))
= -sin(x + cosx).