Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trinh thi ngoc anh
Xem chi tiết
trinh thi ngoc anh
19 tháng 12 2014 lúc 16:06

troi oi!ai giup minh voi !hu..hu..

Luger Girl
Xem chi tiết
Ngô Tấn Đạt
25 tháng 12 2017 lúc 19:30

Đặt \(A=36^{36}-9^{10}\)

\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)

\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)

(5;9)=1 => A chia hết 45

Nguyễn Minh Tiến
Xem chi tiết
Đỗ Minh Anh
Xem chi tiết
SKT_ Lạnh _ Lùng
9 tháng 4 2016 lúc 20:41

Vì 45=9x5

=>36^36-9^10 chia hết cho 9 (1)(vì 36^36 và 9^10 đều chia hết cho9) 

36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
=> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) => 36^36 - 9^10 chia hết cho 45.

Dorami
9 tháng 4 2016 lúc 20:41

https://coccoc.com/search/math#query=(36%5E36-9%5E10)%2F45

Phạm Ngọc Trí
Xem chi tiết
Đinh Đức Hùng
25 tháng 3 2017 lúc 20:24

Ta có : \(36^{36}=\left(4.9\right)^{36}=4^{36}.9^{36}⋮9\)(1)

\(9^{10}⋮9\)(2)

Từ (1); (2) => \(36^{36}-9^{10}⋮9\) (3)

Ta có : \(36^{36}=\left(6^2\right)^{36}=6^{72}=\overline{.....6}\)

\(9^{10}=\overline{......1}\)

\(\Rightarrow36^{36}-9^{10}=\overline{......6}-\overline{......1}=\overline{......5}⋮5\) (4)

Từ (3) ; (4) \(\Rightarrow36^{36}-9^{10}⋮5;9\) Mà \(\left(5;9\right)=1\) \(\Rightarrow36^{36}-9^{10}⋮45\) (đpcm)

Nguyen Xuan Thinh
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Bùi Hà Chi
16 tháng 7 2016 lúc 8:57

Ta có:

\(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)=3^{2014}.11\) chia hết cho 11

Vậy 32016+32015-32014 chia hết cho 11 (đpcm)

--------------------------

Ta có:

\(36^{36}-9^{10}=4^{36}.9^{36}-9^{10}=9^{10}\left(4^{36}.9^{26}-1\right)=\) chia hết cho 9 (1)\(36^{36}-9^{10}=\left(...6\right)-\left(...1\right)=\left(...5\right)\) chia hết cho 5 (2) 

Vì 3636 có tận cùng là 6, 910 có tận cùng là 1 => 3636-910 có tận cùng là 5 [ phần này mình chỉ nói thêm thôi nhé ]

Từ (1),(2) và (5;9)=1 =>3636-910 chia hết cho 5.9=45 (đpcm)

Phan Lê Minh Tâm
16 tháng 7 2016 lúc 9:46

9. \(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)\)

                                      \(=3^{2014}.11⋮11\)

Vậy \(3^{2016}+3^{2015}-3^{2014}\) chia hết cho 11

Kỳ Tỉ
Xem chi tiết
Khải Nhi
16 tháng 7 2016 lúc 8:57

Mình chỉ làm được cái thứ 2 thôi..thông cảm nhé:

 36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9) 
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
---> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) ---> 36^36 - 9^10 chia hết cho 45.

van anh ta
16 tháng 7 2016 lúc 9:02

               9)  Ta có :

                  32016 + 32015 - 32014 = 32014 . (32 + 3 - 1) = 32014 . (9 + 3 - 1) = 32014 . 11 chia hết cho 11 (ĐPCM)

             Tớ chỉ làm đc phần 9 thui ^_^

Đỗ Thị Thanh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 14:33

b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)

c: 5^5-5^4+5^3

=5^3(5^2-5+1)

=5^3*21 chia hết cho 7

e:

72^63=(3^2*2^3)^63=3^126*2^189

 \(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)

\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189

=>ĐPCM

g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)