cho tam giác ABC có M là trung điểm BC , I là trung điểm của AM. Kẻ tia CI cắt AB tại D. Chứng minh AD =1/2 BD ?
Cho tam giác ABC có M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt cạnh AB tại D. Chứng minh
a) AD = 1/2 BD
b) ID = 1/4 CD
Cho tam giác ABC. M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt AB tại D. Chứng minh:
a) AD=1/2 BD
b) ID= 1/4CD
Cho tam giác ABC. M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt AB tại D. Chứng minh rằng: BD=2AD và DC=4ID
cho tam giác ABC, M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt cạnh AB ở D. Chứng minh rằng:
a) AD = 1/2 BD
b) ID = 1/4 CD
Cho ABC là tam giác nhọn có M là trung điểm của BC. Đường thẳng vuông góc với AB tại B cắt AM ở D. Lấy I thuộc tia AD sao cho M là trung điểm DI. chứng minh ci vuông góc cd
Xét tứ giác BICD có
M là trung điểm chung của BC và ID
=>BICD là hình bình hành
=>CI//BD
=>CI vuông góc AB
Cho tam giác ABC, M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt AB tại D. Chứng minh:
a. \(AD=\frac{1}{2}BD\)
b. \(ID=\frac{1}{4}CD\)
Gọi E là trung điểm BD
=> DE = EB (1)
Tam giác DBC có: E là trung điểm BD (theo cách vẽ)
M là trung điểm BC (gt)
=> EM là đường trung bình của tam giác DBC
=> EM // CD (t/c đường tb của tam giác)
Tam giác AEM có: I là trung điểm AM (gt)
DI // EM (vì EM // CD mà I thuộc CD)
=> D là trung điểm AE
=> AD = DE (2)
Từ (1),(2) => AD = DE = EB
Mà BD = DE + EB
BD = 2 DE (vì DE = EB)
=> BD= 2 AD (vì AD = DE) hay AD=1/2 BD
=> đpcm
CÁCH 2 nek!!
Từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H
xét tam giác AHM có : DI // HM (DC // Mx)
AI =IM (gt)
=> DI là đường trung bình của tam giác AHM
=> AD =DH (1)
xét tam giác BDC có: DC // HM (DC // Mx)
BM = MC (gt)
=> HM là đường trung bình của tam giác BDC
=> DH = HB (2)
từ (1) và (2) => AD = DH = HB
=> AD=1/2 DB hay BD = 2AD => đpcm
a) Lấy K là trung điểm BD
Xét △BDC có:
KB=KD (K: trđ BD)
MB=MC (M: trđ BC)
\(\Rightarrow\)MK là đường trung bình △BDC
\(\Rightarrow\)MK//DC
Xét △AKM có:
DI//KM
IA=IM (I: trđ AM)
\(\Rightarrow\)DA=DK
Mà DK=KB
\(\Rightarrow\)DA=DK=KB
\(\Rightarrow\)AD=1/2BD
\(\Rightarrow\)đpcm
b) Xét △AKM có:
DA=DK (cmt)
IA=IM (I: trđ AM)
\(\Rightarrow\) DI là đường trung bình △AKM
\(\Rightarrow\)ID=1/2KM
Có MK là đường trung bình △BDC
\(\Rightarrow\)KM=1/2DC
\(\Rightarrow\)2ID=1/2DC
\(\Rightarrow\)ID=1/4DC
\(\Rightarrow\)đpcm
a) Cho tam giác ABC, M là trung điểm của BC, D trên AC sao cho CD = 2AD. AM cắt BD tại I. Chứng minh I là trung điểm của AM
b) Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm của AM, BI cắt AC tại D. Chứng minh AD = 1/2DC
Cho tam giác ABC có AM là trung tuyến. kẻ ME vuông góc với AB tại E. Vẽ tia Cx song song với AB cắt EM tại I , trên CI lấy D sao cho I là trung điểm của CD.
a) chứng minh m là trung điểm của EI
b) DM cắt AB tại P . Chứng minh yam giác BMP cân tại M
c) chứng minh BD vuông góc với CD
a) do Cx //AB mà IE vg vs AB(gt) nên IE vg vs CD (vì D thuộc Cx)
xét tg BME vầ tg CMI có: BEM=CIM=90 ; BM=CM(vì AM là đg trung tuyến) ; BME=CMI(đ.đ)
=>tg BME=tg CMI(ch-gn)=>ME=MI(2 cạnh t/ ư)=> M là t/đ của EI
b)do EI vg vs Dc(cmt) và I lf t/đ của DC(gt)=> EI là đg trung trực của DC,mà M thuộc EI nên MD=MC(ĐL)=.tg MCD cân tại M=>MDC=MCD(1)
mặt khác: EBM=ICM(vì tg BEM=tg CIM)(2)
từ (1), (2)=>EBM=MDC, mà EPM=MDC(vì CD//AB) nên EBM=EPM=>tg BMP cân tại M
c)xét tg BEID có: BE=DI(cùng =CI) và BE//DI(vì AB//CD, E thuộc AB, I thuộc DC)
=>tg BEID là hbh=>EI//BD. mà DC vg vs EI(cmt) nên DC vg vs BD
Cho tam giác ABC, M là trung điểm của cạnh BC. I là trung điểm của cạnh AM. Tia CI cắt cạnh AB ở D . Chứng minh
a, AD = 1/2 BD
b, ID = 1/4 CD
ko chứng minh đường trung bình vào nhé mọi người
a: Gọi K là trung điểm của BD
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của BD
Do đó: MK là đường trung bình của ΔBDC
Suy ra: MK//DC
Xét ΔAKM có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
Suy ra: AD=DK=KB
hay AD=1/2BD