cho tam giác ABC gọi IX là trung điểm AC. trên tia đối của tia IB lấy E sao cho IE=IB.chứng minh
a\ AE=BC
b\AB=BC
Cho ΔABC. Gọi I là trung điểm của AC. Trên tia đói của tia IB lấy điểm E sao cho IE = IB.
Chứng minh rằng:
a) AK = BC
b) OK ⊥ AB
Cho ΔABC nhọn. Gọi I là trung điểm của AC. Trên tia đói của tia IB lấy điểm E sao cho IE = IB.Chứng minh rằng:
a) AE = BC
b) AK //CE
Mọi người ơi giúp với nha
a) Xét ΔAEI và ΔCBI có:
AI = CI (I là trung điểm của AC)
∠AIE = ∠CIB (2 góc đối đỉnh)
IE = IB (gt)
⇒ ΔAEI = ΔCBI (c.g.c)
⇒ AE = BC (2 cạnh tương ứng)
b) Ta có: ΔAEI = ΔCBI (theo a)
⇒ ∠AEI = ∠CBI (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong ⇒ AE // BC
hình như bạn chép nhầm đề câu b hay sao ấy
Cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB và AC. Trên tia đối của tia NB lấy điểm D sao cho ND=NB. Trên tia đối của tia MC lấy điểm E sao cho ME=MC. Chứng minh
A) AD= BC
b) AE// BC
c) >A là trung điểm của DE
\(a,Xét\) \(\Delta ADN\) \(và\) \(\Delta CBN\) \(có:\)
\(NC=NA\\ \widehat{BNC}=\widehat{AND}\\ NB=ND\)
\(\Rightarrow\Delta ADN=\Delta CBN\left(c.g.c\right)\)
\(\Rightarrow AD=BC\) (cạnh tương ứng)
\(b,\Rightarrow\widehat{ADN}=\widehat{NBC}\) (góc tương ứng)
\(\Rightarrow AD\) song song với BC (so le trong)
\(CM:\Delta AME=\Delta BMC\) (bạn tự CM nha)
Từ đó suy ra \(EA=BC\) (cạnh tương ứng) mà BC=AD \(\Rightarrow EA=AD\) (1)
\(\Rightarrow\widehat{AEM}=\widehat{MCB}\) (góc tương ứng)
\(\Rightarrow AE\) song song với BC
Mà \(AE\) song song với BC, AD song song với BC\(\Rightarrow E,A,D\) thẳng hàng (2)
Từ (1) và (2) suy ra A là trung điểm của ED
(đpcm)
Cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB và AC. Trên tia đối của tia NB lấy điểm D sao cho ND=NB. Trên tia đối của tia MC lấy điểm E sao cho ME=MC. Chứng minh
A) AD= BC
b) góc nhọn AE// BC
c) A là trung điểm của DE
a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)
Do đó \(AD=BC\)
b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)
Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC
c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC
Mà AE//BC nên A,D,E thẳng hàng
Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)
Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)
Vậy A là trung điểm DE
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng AE // BC
Xét tam giác IAE và ICB có
IA = IC ( gt)
góc BIC = góc EIA ( vì 2 góc đối đỉnh )
IB = IC (gt)
suy ra : tam giác IAE = tam giác ICB (c.g.c)
suy ra : góc AEI = góc IBC ( 2 góc tương ứng )
mà 2 góc nằm ở vị trí so le trong
nên AE // BC
xét TAM GIÁC BIC và TAM GIÁC AIE
BI=IE (GT)
IC=AI(GT)
GÓC BIC=GÓC EIA(đối đỉnh)
do đó tam giác BIC=EIA(c-g-c)
=>AE=BE(2 cạnh tương ứng)
=>AE//BC
cho tam giác ABC gọi I là trung điểm của AC trên tia đối của IB lấy điểm E sao cho IE=IB chứng minh rằng AE=BC
b] Ae song song với BC
Xét tam giác IAE và ICB có:
IA = IC (gt)
Góc BIC = góc EIA (vì 2 góc đối đỉnh)
IB = IC (gt)
Suy ra: tam giác IAE = tam giác ICB (c.g.c)
Suy ra góc AEI = góc IBC (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AE//BC
I là trung điểm AC => IA = IC
Ta có IE = IB
Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành
=> AECB là hình bình hành
=> AE = BC và AE song song vs BC
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng:
AE = BC
Giúp mình với!!!
Bạn tự vẽ hình và viết GT;KL
Xét tam giác AIE và tam giác BIC có: AI=IC(I là trung điểm); BI=IE(gt); góc AIE=góc BIC(đối đỉnh)
suy ra tam giác AIE = tam giác CIB(c.g.c)
Suy ra AE=BC(2 cạnh tương ứng) ta có điều phải chứng minh
Chúc bạn học tốt!
CM : Xét tam giác AIE và tam giác CIB
có AI = CI (gt)
EI = BI(gt)
góc AIE = góc BIC (đối đỉnh)
=> tam giác AIE = tam giác CIB (c.g.c)
=> AE = BC ( hai cạnh tương ứng)
1. Cho tam giác ABC, gọi I là trung điểm AC. Trên tia đối IB lấy E sao cho IE=IB
CMR: a) AE=BC
b) AE song song BC
Câu 2: Cho tam giác ABC, M là trung điểm của cạnh AC. Trên tia đối của tia MB, lấy điểm E sao cho MB = ME
a) CM: AE = BC
b) CM: AE // BC
c) Gọi N là trung điểm của cạnh AB. Trên tia đối tia NC, lấy điểm F sao cho NC = NF. CMR: A là trung điểm của EF.
a) Xét ΔAME và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
⇒AE=BC(hai cạnh tương ứng)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)
mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔANF và ΔBNC có
AN=BN(N là trung điểm của AB)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
⇒AF=BC(hai cạnh tương ứng)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
mà AE//BC(cmt)
và AF,AE có điểm chung là A
nên F,A,E thẳng hàng(1)
Ta có: AE=BC(cmt)
mà AF=BC(cmt)
nên AE=AF(2)
Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)