Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Luyri Vũ
Xem chi tiết
HT2k02
11 tháng 7 2021 lúc 10:43

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)

\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)

Luyri Vũ
Xem chi tiết
Akai Haruma
11 tháng 7 2021 lúc 16:59

Lời giải:

Áp dụng BĐT AM-GM:
$\frac{x^3}{y(x+z)}+\frac{y}{2}+\frac{x+z}{4}\geq \frac{3}{2}x$

Tương tự với các phân thức còn lại, cộng theo vế và rút gọn ta được:

$\Rightarrow P=\sum \frac{x^3}{y(x+z)}\geq \frac{x+y+z}{2}$

Tiếp tục áp dụng AM-GM:

$x+y\geq 2\sqrt{xy}$

$y+z\geq 2\sqrt{yz}$

$x+z\geq 2\sqrt{xz}$

$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1$

$\Rightarrow P\geq \frac{1}{2}$

Vậy $P_{\min}=\frac{1}{2}$ khi $x=y=z=\frac{1}{3}$

 

Nguyễn Việt Lâm
11 tháng 7 2021 lúc 16:59

\(\dfrac{x^3}{y\left(x+z\right)}+\dfrac{y}{2}+\dfrac{x+z}{4}\ge\dfrac{3x}{2}\)

Tương tự và cộng lại:

\(P+x+y+z\ge\dfrac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)

Luyri Vũ
Xem chi tiết
HT2k02
11 tháng 7 2021 lúc 10:09

Ta có :

\(P=\sum\dfrac{x^3}{\sqrt{y^2+3}}\ge\sum\dfrac{x^3}{\sqrt{y^2+xy+yz+zx}}\ge\sum\dfrac{x^3}{\sqrt{\left(x+y\right)\left(z+y\right)}}\\ \overset{Cosi}{\ge}\sum\dfrac{2x^3}{x+2y+z}\ge2\sum\dfrac{\left(x^2\right)^2}{x^2+2xy+xz}\\ \overset{Svacxo}{\ge}2\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(\overset{Cosi}{\ge}\dfrac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{2}\\ \overset{Cosi}{\ge}\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

Linh Anh
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
Vũ Tiền Châu
17 tháng 7 2018 lúc 12:21

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!

Huy Nguyen
17 tháng 1 2021 lúc 18:31

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!

Hồ Minh Phi
Xem chi tiết
Akai Haruma
20 tháng 11 2018 lúc 0:55

Lời giải:

Để cho gọn đặt \((\sqrt{x}; \sqrt{y}; \sqrt{z})=(a,b,c)\) với \(a,b,c>0\)

Khi đó:

\(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{1}{2}(\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab})\)

\(=\frac{1}{2}\left(1-\frac{a^2}{a^2+2bc}+1-\frac{b^2}{b^2+2ac}+1-\frac{c^2}{c^2+2ab}\right)\)

\(=\frac{3}{2}-\frac{1}{2}\underbrace{\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)}_{M}\)

Áp dụng BĐT Cauchy-Schwarz:

\(M\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

\(\Rightarrow A=\frac{3}{2}-\frac{1}{2}M\leq \frac{3}{2}-\frac{1}{2}=1\)

Vậy \(A_{\max}=1\Leftrightarrow a=b=c\Leftrightarrow x=y=z\)

Đào Thị Hoàng Yến
Xem chi tiết
Akai Haruma
23 tháng 11 2018 lúc 21:41

Tham khảo tại đây:

Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 9:05

Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)

\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)

Dấu = xảy ra khi x=2

=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)

Đặt t=(x+y+z)^2(t>=36)

=>P>=2t/t-6

Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)

\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)

=>f(t) đồng biến

=>f(t)>=f(36)=6/7

=>P>=12/7

Dấu = xảy ra khi x=y=z=2

Bùi Đức Anh
Xem chi tiết
Akai Haruma
26 tháng 1 2021 lúc 13:30

Bạn tham khảo lời giải tại đây:

cho các số thực dưong x,y,z thỏa mãn : x2 y2 z2=3chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}} \dfrac{y}{\sqrt[3]{zx}} \df... - Hoc24

Akai Haruma
26 tháng 1 2021 lúc 13:35

Cách khác:

Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:

\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)

\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)

Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)

Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$

Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$

BĐT $(*)$ trở thành:

$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$

$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$

$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$

Điều này đúng với mọi $\sqrt{3}< a\leq 3$

Do đó BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$