Tìm điều kiện để căn thức sau có nghĩa: \(\sqrt{x^2-8x-9}\)
Tìm điều của x để căn thức sau có nghĩa
\(\sqrt{x^2-9}\)
\(\sqrt{x^2+9}\)
\(\sqrt[3]{3x+9}\)
a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b) ĐKXĐ: \(x\in R\)
c) ĐKXĐ: \(x\in R\)
a,\(\sqrt{5-4x}\)
b,\(\sqrt{\left(x+1\right)^2}\)
c,\(\sqrt{\dfrac{-1}{x-2}}\)
giúp mình tìm điều kiện để tìm các căn thức sau có nghĩa
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)
\(\Rightarrow\) Với mọt giá trị của x
\(c,ĐK:\dfrac{-1}{x-2}\ge0\)
Vì \(-1< 0\)
\(\Rightarrow x-2< 0\)
\(\Rightarrow x< 2\)
a)
Căn thức có nghĩa thì:
\(5-4x\ge0\\ \Leftrightarrow4x\le5\\ \Rightarrow x\le\dfrac{5}{4}\)
b)
Để căn thức có nghĩa thì:
\(\left(x+1\right)^2\ge0\) (luôn đúng)
Vậy căn thức có nghĩa với mọi giá trị x.
c)
Để căn thức có nghĩa thì:
\(\left\{{}\begin{matrix}-\dfrac{1}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x\ne2\end{matrix}\right.\\ \Rightarrow x< 2\)
Tìm điều kiện để căn thức sau có nghĩa
\(\sqrt{-x^2-1}\)
Tìm điều kiện của x để căn thức sau có nghĩa :
\(\sqrt{\frac{2}{x^2-4x+4}}\)
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa
Tìm điều kiện của x để căn thức sau có nghĩa:
\(\sqrt{2\left|x\right|-1}\)
ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)
\(\Leftrightarrow2\left|x\right|\ge1\)
\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)
Tìm điều kiện của x để căn thức sau có nghĩa:
a)\(\sqrt{\dfrac{8x}{x^2+1}}\)
b)\(\sqrt{\dfrac{x^2-1}{x^2}}\)
Giải:
a) Để biểu thức có nghĩa thì:
\(\dfrac{8x}{x^2+1}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8x\ge0\\x^2+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8x\le0\\x^2+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
b) Để biểu thức có nghĩa thì:
\(\dfrac{x^2-1}{x^2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1\ge0\\x^2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1\le0\\x^2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>0\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x>0\)
Vậy ...
Tìm điều kiện để biểu thức chứa căn thức bậc hai có nghĩa
a) Căn của x2 - 8x - 9
b) Căn của 4 - 9x2
c) Căn của 2x - 3/2x2 + 1
d) Căn của x - 6/x-2
a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì
\(x^2-8x-9\ge0\)
\(\Leftrightarrow x^2+x-9x-9\ge0\)
\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)
\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)
\(Để\sqrt{4-9x^2}\text{có nghĩa}\)
\(\Rightarrow4-9x^2\ge0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)
\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)
c,Để \(\sqrt{\frac{2x-3}{2x^2+1}}\)có nghĩa thì
\(\Rightarrow\orbr{\begin{cases}2x-3\ge0\\2x^2+1>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x\ge3\\2x^2>-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge\frac{3}{2}\\x^2>-\frac{1}{2}\text{(luôn đúng)}\end{cases}}\)
\(\Rightarrow x\ge\frac{3}{2}\)
Tìm điều kiện của x để căn thức sau có nghĩa
a) $\sqrt{2x+10}$ +1/(x^2-4)
b) $\sqrt{\frac{x^2+1}{x-1}}$
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
tìm điều kiện để căn thức có nghĩa:\(\sqrt{4x-x^2-2}\)
\(\sqrt{4x-x^2-2}\)
ĐKXĐ : \(4x-x^2-2\ge0\)
\(\Leftrightarrow x^2-4x+2\le0\)
Ta có : \(x^2-4x+2=0\)
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot2=8>0\)
=> Phương trình có hai nghiệm
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)
Để \(x^2-4x+2\le0\)
\(\Rightarrow\orbr{\begin{cases}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{cases}}\)
Vậy ....