4/3.6+ 4/6.9+ 4/9.12 + 4/12.15
1/3.6+1/6.9+1/9.12+1/12.15+1/15.18
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{15}-\dfrac{1}{18}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{18}\right)=\dfrac{1}{3}\cdot\dfrac{5}{18}=\dfrac{5}{54}\)
tính nhanh tổng sau:(4/3.6)+(4/6.9)+...+(4/12.15)
\(\frac{4}{3.6}+\frac{4}{6.9}+...+\frac{4}{12.15}\)
\(=\frac{4\left(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{12.15}\right)}{3}\)
\(=\frac{4\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{12}-\frac{1}{15}\right)}{3}\)
\(=\frac{4\left(\frac{1}{3}-\frac{1}{15}\right)}{3}\)
\(=\frac{\frac{16}{15}}{3}=\frac{48}{15}\)
\(\frac{4}{3.6}\)+ \(\frac{4}{6.9}\)+ \(\frac{4}{9.12}\)+\(\frac{4}{12.15}\)
= 4(\(\frac{1}{3.6}\)+\(\frac{1}{6.9}\)+\(\frac{1}{9.12}\)+\(\frac{1}{12.15}\))
=\(\frac{4}{3}\)( \(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\) )
=\(\frac{4}{3}\)(\(\frac{1}{3}-\frac{1}{15}\))
=\(\frac{4}{3}\).\(\frac{4}{15}\)
=\(\frac{16}{45}\)
mk làm đúng chưa
\(\left(\frac{-1}{3.6}-\frac{1}{6.9}-\frac{1}{9.12}-\frac{1}{12.15}:\left|x\right|=\frac{-8}{15}\right)\)
a) So sánh \(1995^n.1997^n\)với \(1996^{2n}\)
b) Rút gọn \(A=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{12.15}+\frac{1}{15.18}+\frac{1}{18.21}+\frac{1}{21.24}\)
a/
\(1995^n.1997^n=\left(1995.1997\right)^n\)
\(1996^{2n}=\left(1996^2\right)^n\)
\(1995.1997=\left(1996-1\right).\left(1996+1\right)=1996^2-1\)
\(\Rightarrow1995.1997< 1996^2\Rightarrow1995^n.1997^n< 1996^{2n}\)
b/
\(A=\frac{1}{2.9}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{9.20}+\frac{1}{9.30}+\frac{1}{9.42}+\frac{1}{9.56}\)
\(A=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)
\(A=\frac{1}{9}\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\right)\)
\(A=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=\frac{1}{9}\left(1-\frac{1}{9}\right)=\frac{1}{9}.\frac{8}{9}=\frac{8}{81}\)
Tính Nhanh : a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
b) \(\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{12.15}\)
a) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}\div2=\frac{50}{101}\)
b) Đặt \(B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{12.15}\)
\(3B=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\)
\(3B=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\)
\(3B=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(B=\frac{4}{15}\div3=\frac{4}{45}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}\div2=\frac{50}{101}\)
Tính tổng:
N=2/3.6+2/6.9+2/9.12+....+2/2019.2022
\(N=\dfrac{2}{3.6}+\dfrac{2}{6.9}+...+\dfrac{2}{2019.2022}\)
\(\Rightarrow N=2\left(\dfrac{1}{3.6}+\dfrac{1}{6.9}+...+\dfrac{1}{2019.2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+...+\dfrac{3}{2019.2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{2019}-\dfrac{1}{2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}.\dfrac{673}{2022}\\ \Rightarrow N=\dfrac{673}{3033}\)
3/3.6 + 3/6.9 + 3/9.12 + ... + 3/96.99
Đặt \(A=\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{96\cdot99}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{99}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow A=\frac{32}{99}\)
\(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{96.99}\)
\(=\frac{3}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{99}\right)\)
\(=1.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=1.\frac{32}{99}\)
\(=\frac{32}{99}\)
số hạng của dãy: 1/3.6 ; 1/6.9 ; 1/9.12 ; ... ; 1/156.159
Số số hạng là :
(159 - 6) : 3 + 1 = 52 (số hạng)
Số số hạng là :
(159 - 6) : 3 + 1 = 52 (số hạng)