\(3-\dfrac{2}{2x-3}=\dfrac{2}{5}+\dfrac{2}{9-6x}-\dfrac{3}{2}\)
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
g) \(3-\dfrac{2}{2x-3}=\dfrac{2}{5}=\dfrac{2}{9-6x}-\dfrac{3}{2}\)
h) \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
i) \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
k) \(\dfrac{13}{x-1}+\dfrac{5}{2x-2}-\dfrac{6}{3x-3}\)
m) \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
n) \(\left(\dfrac{3}{2}-\dfrac{5}{11}-\dfrac{3}{13}\right)\left(2x-2\right)=\left(-\dfrac{3}{4}+\dfrac{5}{22}+\dfrac{3}{26}\right)\)
4 câu đầu hìn như sai đề :v
`m)(3/2-2/(-5)):x-1/2=3/2`
`<=>(3/2+2/5):x=3/2+1/2=2`
`<=>19/10:x=2`
`<=>x=19/10:2=19/20`
`n)(3/2-5/11-3/13)(2x-2)=(-3/4+5/22+3/26)`
`<=>(3/2-5/11-3/13)(2x-2)+3/4-5/22-3/26=0`
`<=>(3/2-5/11-3/13)(2x-2)+1/2(3/2-5/11-3/13)=0`
`<=>(3/2-5/11-3/13)(2x-2+1/2)=0`
Mà `3/2-5/11-3/13>0`
`<=>2x-2+1/2=0`
`<=>2x-3/2=0`
`<=>2x=3/2<=>x=3/4`
h, \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\left(x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2}{2}-1=\dfrac{x}{12}\)
\(\Leftrightarrow x^2-\dfrac{x}{6}-2=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{12}+\dfrac{1}{144}-\dfrac{289}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{12}\right)^2=\dfrac{289}{144}\)
\(\Leftrightarrow x=\dfrac{1}{12}\pm\dfrac{\sqrt{289}}{12}\)
Vậy ...
i, \(\Leftrightarrow x^2-\dfrac{2.x.7}{12}+\dfrac{49}{144}-\dfrac{1}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2=\dfrac{1}{144}\)
\(\Leftrightarrow x=\dfrac{7}{2}\pm\dfrac{1}{12}\)
Vậy ...
h) Ta có: \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Leftrightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Leftrightarrow12x^2-24-2x=0\)
\(\Delta=\left(-2\right)^2-4\cdot12\cdot\left(-24\right)=1156\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-34}{24}=\dfrac{-8}{3}\\x_2=\dfrac{2+34}{24}=\dfrac{36}{24}=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{8}{3};\dfrac{3}{2}\right\}\)
m) Ta có: \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{19}{10}:x=2\)
hay \(x=\dfrac{19}{20}\)
Vậy: \(S=\left\{\dfrac{19}{20}\right\}\)
giải các phương trình sau
1, \(\dfrac{3}{2+x}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)
2, \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)
1: Ta có: \(\dfrac{3}{x+2}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)
Suy ra: \(3x-6-x+1=2x+4\)
\(\Leftrightarrow2x-5=2x+4\left(vôlý\right)\)
2: Ta có: \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)
Suy ra: \(\left(x-5\right)\left(2x+3\right)-x\left(2x-3\right)=1-6x\)
\(\Leftrightarrow2x^2-7x-15-2x^2+6x+6x-1=0\)
\(\Leftrightarrow5x=16\)
hay \(x=\dfrac{16}{5}\)
giải các phương trình sau
1, \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
2, \(\dfrac{3}{2+x}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)
3, \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)
1: Ta có: \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)
Suy ra: \(-3\left(x+4\right)-3+5x=x-4\)
\(\Leftrightarrow-3x-12-3+5x-x+4=0\)
\(\Leftrightarrow x=11\left(nhận\right)\)
2. ĐKXĐ: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{3(x-2)}{(2+x)(x-2)}-\frac{x-1}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)
\(\Leftrightarrow \frac{3(x-2)-(x-1)}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)
\(\Rightarrow 3(x-2)-(x-1)=2(x+2)\)
\(\Leftrightarrow 2x-5=2x+4\Leftrightarrow 9=0\) (vô lý)
Vậy pt vô nghiệm
3. ĐKXĐ: $x\neq \pm \frac{3}{2}$
PT \(\Leftrightarrow \frac{(x-5)(2x+3)-x(2x-3)}{(2x-3)(2x+3)}=\frac{1-6x}{(2x-3)(2x+3)}\)
\(\Rightarrow (x-5)(2x+3)-x(2x-3)=1-6x\)
\(\Leftrightarrow 2x^2-7x-15-2x^2+3x+6x-1=0\)
\(\Leftrightarrow 2x-16=0\Leftrightarrow x=8\) (thỏa mãn)
Hãy chứng tỏ các phân thức sau bằng nhau
a/ \(\dfrac{x+3}{2x-5}=\dfrac{x^2+3x}{2x^2-5x}\)
b/ \(\dfrac{3-x}{x+3}=\dfrac{x^2-6x+9}{9-x^{ }}\)
c/ \(\dfrac{x^3+64}{\left(3-x\right)\left(x^2-4x+16\right)}\)\(=\dfrac{x-4}{x-3}\)
d/ \(\dfrac{x^3+6x^2-x-30}{x^3+3x^2-25x-75}=\dfrac{x-2}{x-5}\)
AI GIÚP MK VS Ạ AI NHANH MK SẼ VOTE Ạ
\(a,VP=\dfrac{x\left(x+3\right)}{x\left(2x-5\right)}=\dfrac{x+3}{2x-5}=VT\\ b,VP=\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\dfrac{3-x}{x+3}=VT\\ c,VP=\dfrac{\left(x+4\right)\left(x^2-4x+16\right)}{\left(3-x\right)\left(x^2-4x+16\right)}=\dfrac{x+4}{3-x}=VP\left(bạn.sửa.lại.đề.đi\right)\\ d,VT=\dfrac{x^3-2x^2+8x^2-16x+15x-30}{x^3-5x^2+8x^2-40x+15x-75}\\ =\dfrac{\left(x-2\right)\left(x^2+8x+15\right)}{\left(x-5\right)\left(x^2+8x+15\right)}=\dfrac{x-2}{x-5}=VP\)
a. 6x-4=5x
b.\(\dfrac{2x+3}{3}\) =\(\dfrac{5-4x}{2}\)
c.(x+7) (x-10) =0
d. \(\dfrac{2}{x-3}\)+\(\dfrac{3}{x+3}\)=\(\dfrac{3x+5}{x^2-9}\)
\(a,6x-4=5x\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\\ b,\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\\ \Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\\ \Leftrightarrow4x+6=15-12x\\ \Leftrightarrow16x-9=0\\ \Leftrightarrow x=\dfrac{9}{16}\\ c,\left(x+7\right)\left(x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)
d, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{3x+5}{\left(x+3\right)\left(x-3\right)}=0\\ \Leftrightarrow\dfrac{2x+6+3x-9-3x-5}{\left(x+3\right)\left(x-3\right)}=0\\ \Rightarrow2x-8=0\\ \Leftrightarrow x=4\left(tm\right)\)
a.6x-4=5x <=> x=4
b.\(\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\)
\(\Leftrightarrow\dfrac{2\left(2x+3\right)}{6}=\dfrac{3\left(5-4x\right)}{6}\)
\(\Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\)
\(\Leftrightarrow4x+6=15-12x\)
\(\Leftrightarrow16x=11\)
\(\Leftrightarrow x=\dfrac{11}{16}\)
c.(x+7)(x-10)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)
d.\(ĐK:x\ne\pm3\)
\(\Rightarrow\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{2\left(x+3\right)+3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2\left(x+3\right)+3\left(x-3\right)=3x+5\)
\(\Leftrightarrow2x+6+3x-9-3x-5=0\)
\(\Leftrightarrow2x-8=0\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(tm\right)\)
a, \(6x-5x=4\Leftrightarrow x=4\)
b, \(4x+6=15-12x\Leftrightarrow16x=9\Leftrightarrow x=\dfrac{9}{16}\)
c, \(\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)
d, đk : x khác -3 ; 3
\(2x+6+3x-9=3x+5\Leftrightarrow2x=8\Leftrightarrow x=4\left(tmđk\right)\)
Thực hiện phép tính:
a, (2x-5)(5-x)
b, \(\dfrac{1}{3x-2}\)-\(\dfrac{1}{3x+2}\)
c, \(\dfrac{3}{x-3}\)-\(\dfrac{6x}{x^2-9}\)+\(\dfrac{x}{x+3}\)
\(a,\left(2x-5\right)\left(5-x\right)=5\left(2x-5\right)-x\left(2x-5\right)=10x-25-2x^2+5x=15x-2x^2-25\\ b,\dfrac{1}{3x-2}-\dfrac{1}{3x+2}=\dfrac{3x+2-3x+2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{4}{\left(3x-2\right)\left(3x+2\right)}\)
\(c,\dfrac{3}{x-3}-\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+9-6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
Giải các phương trình sau:
a) 2,3 - 2(0,7 + 2) = 3,6 - 1,7x
b) \(\dfrac{5x+7}{4}-\dfrac{3x+5}{8}=\dfrac{4x+9}{5}-\dfrac{x-9}{3}\)
c) \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
d) (x - 1)(x + 2) - x(x + 3) = 8
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
bài 3giải các phương trình sau
b,\(\dfrac{2x}{3}=8\)
d,\(\dfrac{6}{5}x=-9\)
f,\(\dfrac{2-3x}{4}=\dfrac{4x-5}{5}\)
h,\(\dfrac{10-3x}{2}=\dfrac{6x+1}{3}\)
Lời giải:
b.
$\frac{2x}{3}=8$
$\Leftrightarrow 2x=3.8=24$
$\Leftrightarrow x=24:2=12$
d.
$\frac{6}{5}x=-9$
$\Leftrightarrow x=-9: \frac{6}{5}=\frac{-15}{2}$
f.
$\frac{2-3x}{4}=\frac{4x-5}{5}$
$\Leftrightarrow 5(2-3x)=4(4x-5)$
$\Leftrightarrow 10-15x=16x-20$
$\Leftrightarrow 30=31x$
$\Leftrightarrow x=\frac{30}{31}$
h.
$\frac{10-3x}{2}=\frac{6x+1}{3}$
$\Leftrightarrow 3(10-3x)=2(6x+1)$
$\Leftrightarrow 30-9x=12x+2$
$\Leftrightarrow 28=21x$
$\Leftrightarrow x=\frac{28}{21}=\frac{4}{3}$