phân tích đa thức thành nhân tử x^3 -3x^2+3x -1
Phân tích đa thức thành nhân tử:
x\(^3\)-64y\(^3\)+3x\(^2\)+3x+1
= (x3+3x2+3x+1)-(4y)3
=(x+1)3-(4y)3
=(x+1-4y)[(x+1)2+(x+1).4y+16y2 ]
=(x+1-4y)[(x2+2x+1)+(4xy+4y)+16y2]
x^3+3x^2-3x-1. phân tích đa thức thành nhân tử
\(x^3+3x^2-3x-1=\left(x^3-1\right)+\left(3x^2-3x\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x^2+x+1\right)+3x\right]=\left(x-1\right)\left(x^2+4x+1\right)\)
Phân tích đa thức thành nhân tử:
\(x^3+y^3-3x^2+3x-1\)
\(x^3-3x^2y+x+3xy^2-y-y^3\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
\(x^3-3x^2y+x+3xy^2-y-y^3\\=(x^3-3x^2y+3xy^2-y^3)+(x-y)\\=(x-y)^3+(x-y)\\=(x-y)[(x-y)^2+1]\\=(x-y)(x^2-2xy+y^2+1)\)
Phân tích đa thức thành nhân tử: x^3+3x^2+3x+1-27x^3
\(x^3+3x^2+3x+1-27x^3=-26x^3+3x^2+3x+1\)
\(=-26x^3+13x^2-10x^2+5x-2x+1\)
\(=\left(2x-1\right).\left(-13x^2-5x-1\right)\)
phân tích đa thức thành nhân tử x^4 + 3x^3 - 6x^2 + 3x + 1
phân tích đa thức thành nhân tử
3x(x-1)2-(1-x)3
3x(x-1)2-(1-x)3=3x(x-1)2-(1-x)2.(1-x)=3x(x-1)2+(x-1)2.(1-x)=(x-1)2(3x-1-x)=(2x-1)(x-1)2
Phân tích đa thức thành nhân tử
27x^3+27x^2+9x+1
-x^3-3x^2-3x-1
- 8+12x-6x^2+x^3
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
phân tích đa thức thành nhân tử
(3x+1)^2-(3x-1)^2
(x+y)^2-(x-y)^2
(x+y)^3-(x-y)^3
x^3+y^3+z^3-3xyz
\(\left(3x+1\right)^2-\left(3x-1\right)^2\)
\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)
\(=2\cdot6x\)
\(=12x\)
_________
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
\(\left(x+y\right)^3+\left(x-y\right)^3\)
\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)
\(=2x\cdot\left(x^2+3y^2\right)\)
______
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)
Phân tích các đa thức sau thành nhân tử: (3x - 2)(4x - 3) (2 - 3x )(x - 1) - 2(3x - 2)( x +1)