Tính: \(\sin^2x.sin^2y+sin^2x.cos^2y+\cos^2x\)
\(\dfrac{cos^2x-sin^2y}{sin^2x.sin^2y}-cot^2x.cot^2y\)
Chứng minh rằng những biểu thức sau không phụ thuộc vào đối số
\(E=\dfrac{cos^2x-sin^2y}{sin^2x.sin^2y}-cot^2x.cot^2y\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
\(E=\dfrac{\left(cosx-siny\right)\left(cosx+siny\right)}{sin^2x\cdot sin^2y}-\dfrac{cos^2x}{sin^2x}\cdot\dfrac{cos^2y}{sin^2y}\)
\(=\dfrac{cos^2x\left(1-cos^2y\right)-sin^2y}{sin^2x\cdot sin^2y}\)
\(=\dfrac{sin^2y\left(cos^2x-1\right)}{sin^2x\cdot sin^2y}=-1\)
CM đẳng thức: \(\frac{tan^2x-tan^2y}{tan^2x.tan^2y}=\frac{sin^2x-sin^2y}{sin^2x.sin^2y}\)
Cho \(0< x< 90^o\) . Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
\(A=sin^6x+cos^6x+3sin^2x.cos^2x+tan^2x.cos^2x+cot^2x.sin^2x\)
Tính \(cos^4x+Sin^2x.cos^2x+\sin^2x\)
\(\left(sin^2x+cos^2x\right)cos^2x+sin^2x=cos^2x+sin^2x=1\)
\(\cos^4x+\sin^2x.cos^2x+sin^2x\)
\(cos^4x+sin^2x.cos^2x+sin^2x\)
\(=cos^2x.cos^2x+sin^2x.cos^2x+sin^2x\)
\(=cos^2x\left(cos^2x+sin^2x\right)+sin^2x\)
\(=cos^2x.1+sin^2x\)
\(=cos^2x+sin^2x\)
\(=1\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
1. giải phương trình \(\sqrt{x+4}+\sqrt{x-4}=2\left(\sqrt{x^2-16}+x-6\right)\)
2. cho \(T=sin^6x+cos^6x+3sin^2x.cos^2x+tan^2x.cos^2x+cotan^2x.sin^2x\)
3. cho a và b là các số dương thỏa mãn điều kiện a+b=1. CMR: đẳng thức xảy ra khi nào?
4. giải bằng hai cách:
tìm x, y nguyên thỏa mãn phương trình \(x^2-2y^2=1\)
\(1.\)
ĐKXĐ : \(x\ge4\)
\(pt\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=2\sqrt{x^2-16}+2x-12\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=x+4+2\sqrt{\left(x+4\right)\left(x-4\right)}+x-4-12\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=\left(\sqrt{x+4}+\sqrt{x-4}\right)^2-12\) \(\left(1\right)\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=y\) \(\left(y>0\right)\)
\(pt\left(1\right)\Leftrightarrow y=y^2-12\)
\(y^2-y-12=0\)
\(\Leftrightarrow y^2-4y+3y-12=0\)
\(\Leftrightarrow\left(y-4\right)\left(y+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=4\\y=-3\left(\text{loại}\right)\end{matrix}\right.\)
\(y=4\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)
\(\Leftrightarrow\sqrt{x^2-16}=8-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}8-x\ge0\\x^2-16x=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\0x=64\left(\text{vô nghiệm}\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
1/ ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)
\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\Rightarrow x+\sqrt{x^2-16}=\frac{a^2}{2}\)
Phương trình trở thành:
\(a=2\left(\frac{a^2}{2}-6\right)\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=3\Rightarrow2x+2\sqrt{x^2-16}=9\)
\(\Rightarrow2\sqrt{x^2-16}=9-2x\) (\(x\le\frac{9}{2}\))
\(\Rightarrow4\left(x^2-16\right)=\left(9-2x\right)^2\)
Phương trình bậc 2 rồi đó, bạn tự giải
2/ Cho T rồi bắt làm gì bây giờ bạn ơi?
3/ Chứng minh cái gì bạn ơi?
4/ Không giải được bạn ơi, pt này chỉ giải được khi x; y là số nguyên tố, không phải số nguyên, mình gặp vài chục lần rồi nên vẫn nhớ :(
\(2.\)
\(T=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{sin^2x}{cos^2x}.cos^2x+\frac{cos^2x}{sin^2x}.sin^2x\)
\(=\left(sin^2x+cos^2\right)^3+sin^2x+cos^2x=1^3+1=2\)
Chứng minh biểu thức sau không phụ thuộc x
sin^6x+cos^6x+sin^4x+cos^4x+5.sin^2x.cos^2x
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x\cdot cos^2x+cos^4x\right)\)
\(+\left(sin^2x+cos^2x\right)^2-2sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)
\(=sin^4x+cos^4x-sin^2x\cdot cos^2x+1-2\cdot sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)
\(=1-2\cdot sin^2x\cdot cos^2x-sin^2x\cdot cos^2x+1-2\cdot sin^2x\cdot cos^2x+5\cdot sin^2x\cdot cos^2x\)
\(=2\)