Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánhh Ngọcc
Xem chi tiết
Phạm Lê Thúy Anh
Xem chi tiết
hưng phúc
28 tháng 9 2021 lúc 21:12

a. 6x2 - (2x + 5)(3x - 2) = 7

<=> 6x2 - 6x2 + 4x - 15x + 10 = 7

<=> -11x = -3

<=> \(x=\dfrac{3}{11}\)

b. (5 - x)(25 + 5x + x2) + x(x2 - 7) = 25

<=> 125 - x3 + x3 - 7x = 25

<=> -7x = 25 - 125

<=> -7x = -100

<=> \(x=\dfrac{100}{7}\)

c. (7 - 2x)2 + (3 + 2x)(3 - 2x) = 30

<=> 49 - 28x + 4x2 + 9 - 4x2 = 30

<=> 4x2 - 4x2 - 28x = 30 - 49 - 9

<=> -28x = -28

<=> x = 1

bui thi thanh
Xem chi tiết
NGUYEN HAI ANH
28 tháng 10 2017 lúc 17:42

a, \(x^4+2x^2+1-x^2\)

\(\left(x^2+1\right)^2-x^2\)

\(\left(x^2+x+1\right)\left(x^2-x+1\right)\)

b, \(x^4+x^2+1\)

\(x^4+2x^2+1-x^2\)

= .. ( như phần a )

c, \(y^4+64\)

\(\left(y^2+8\right)\left(y^2-8\right)\)

d, \(4xy+3z-12y-xz\)

\(=4y\left(x-3\right)-z\left(x-3\right)\)

\(=\left(x-3\right)\left(4y-z\right)\)

e, \(x^2-4xy+4y^2-z^2+6z-9\)

\(=\left(x-2y\right)^2-\left(z-3\right)^2\)

g, \(x^2-4xy+5x+4y^2-10y\)

\(=\left(x^2-4xy+4y^2\right)+\left(5x-10y\right)\)

\(=\left(x-2y\right)^2+5\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y+5\right)\)

h, \(x^2-7x+6\)

\(=x^2-6x-x+6\)

\(=x\left(x-6\right)-\left(x-6\right)\)

\(=\left(x-6\right)\left(x-1\right)\)

i, \(x^3+5x^2+6x+2\)

\(=x^3+x^2+4x^2+4x+2x+2\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+2\right)\)

bui thi thanh
28 tháng 10 2017 lúc 19:35

phần b là 6^4 nhé

bui thi thanh
28 tháng 10 2017 lúc 19:37

nhầm câu c là 6^4

Phạm Lê Thúy Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 9 2021 lúc 22:25

a: Ta có: \(\left(x-3\right)^2-x\left(x+5\right)=9\)

\(\Leftrightarrow x^2-6x+9-x^2-5x=9\)

\(\Leftrightarrow x=0\)

b: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

Linh Diệu (nh-kdl)
Xem chi tiết
(っ◔◡◔)っ ♥ Aurora ♥
2 tháng 1 2023 lúc 13:04

\(x^2+4x+3=x^2+3x+x+3=\left(x^2+3x\right)+\left(x+3\right)=x\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(x+1\right)\)

Linh Diệu (nh-kdl)
2 tháng 1 2023 lúc 13:22

m.n giúp mk câu này vs ạ 

(\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}+\dfrac{16}{4-x^2}\)) : (\(\dfrac{4}{2-x}-\dfrac{8}{2x-x^2}\))

Trần Đức Anh
Xem chi tiết
Lấp La Lấp Lánh
9 tháng 10 2021 lúc 8:43

a)\(x^4+3x^3+x^2+3x=x\left(x^3+3x^2+x+3\right)\)

\(=x\left[x^2\left(x+3\right)+\left(x+3\right)\right]=x\left(x+3\right)\left(x^2+1\right)\)

b) \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-4z^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)

c) \(=2x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(2x-7\right)\)

Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 8:43

\(a,=x^3\left(x+3\right)+x\left(x+3\right)=x\left(x^2+1\right)\left(x+3\right)\\ b,=\left(x+3y\right)^2-4z^2=\left(x+3y+2z\right)\left(x+3y-2z\right)\\ c,=2x^2-2x-7x+7=\left(x-1\right)\left(2x-7\right)\)

Shauna
9 tháng 10 2021 lúc 8:45

\(a)=x^3(x+3)+x(x+3)=(x^2+x)(x+3)=x(x+1)(x+3)\\b)=(x+3y)^2-4z^2=(x+3y-2z)(x+3y+2z)\\c)=2x^2-2x-7x+7=2x(x-1)-7(x-1)=(2x-7)(x-1)\)

Vũ Hà Linh
Xem chi tiết
Akai Haruma
31 tháng 1 2021 lúc 1:00

$x_{52}$ ở đâu vậy bạn? Bạn xem lại đề.

Dương Thị Tường VI
Xem chi tiết
Lê Ng Hải Anh
30 tháng 4 2019 lúc 14:16

Phần a dễ bạn tự làm nha!!! :))

b, Ta có: \(\Delta^'=\left[-\left(m+1\right)\right]^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)

=> PT luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{cases}}\)

Ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)

\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=2\)

\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2}=0\)

\(\Leftrightarrow2\left(m+1\right)-2+2\sqrt{2m}=0\)

\(\Leftrightarrow2m+2\sqrt{2m}=0\)

\(\Leftrightarrow m+\sqrt{2m}=0\)

\(\Leftrightarrow\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{m}=0\\\sqrt{m}+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\\sqrt{m}=-\sqrt{2}\end{cases}}}\)

Vậy: m = 0

=.= hk tốt!!

Lê Hồ Trọng Tín
30 tháng 4 2019 lúc 14:21

a) Khi m=1 thì pt<=>x2-4x+2=0

Có:\(\Delta\)'=(-2)2-2=2>0=>pt có 2 nghiệm là x1=\(2+\sqrt{2}\)và x2=2-\(\sqrt{2}\)

b)Để pt có nghiệm thì \(\Delta\)'=(m+1)2-2\(\ge\)0<=>m\(\ge\)\(\sqrt{2}\)-1

Theo định lý Viète thì:x1+x2=2(m+1)=\(\sqrt{2}\)<=>\(\frac{\sqrt{2}-2}{2}\)

Nguyễn Minh Châu
30 tháng 4 2019 lúc 14:29

b. Vì phương trình bậc 2 có 2 nghiệm x1 và x2 nên 

         \(x^2-2\left(m+1\right)x+2m=\left(x-x1\right)\left(x-x2\right)=0\)

\(\Rightarrow\hept{\begin{cases}x1.x2=2m\\x1+x2=2\left(m+1\right)\\\sqrt{x1}+\sqrt{x2}=\sqrt{2}\end{cases}}\)(*)

Ta có:            \(\left(\sqrt{x1}+\sqrt{x2}\right)^2=2\)

             \(\Leftrightarrow x1+x2+2\sqrt{x1.x2}=2\)

              \(\Rightarrow2m+2-2\sqrt{2m}=2\)(Theo (*))

              \(\Leftrightarrow2m-2\sqrt{2m}=0\)

              \(\Leftrightarrow\sqrt{2m}.\left(\sqrt{2m}-2\right)=0\)

              \(\Leftrightarrow\orbr{\begin{cases}\sqrt{2m}=0\\\sqrt{2m}=2\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m=0\\m=2\end{cases}}\)

       

Ngọc Ánh
Xem chi tiết
Trần Tuấn Hoàng
15 tháng 4 2022 lúc 21:31

\(K\left(x\right)=L\left(x\right)\)

\(\Rightarrow x^2-3x+2=x^2+px+q+1\)

\(\Rightarrow-3x+2=px+q+1\)

-Áp dụng PP hệ số bất định: 

\(\Rightarrow p=-3;q+1=2\Rightarrow q=1\)