Cho \(\Delta ABC\)vuông tại A có AB<AC . Vẽ AH vuông góc BC tại H . Gọi T,S lần lượt là hình chiếu B lên AB và AC . CHo biết BC=2a và góc ABC= 60 .
a) tính theo a diện tích tam giác ATS b) ĐƯờng thằng ST cắt đường thẳng BC tại K . Tính KC theo a
cho \(\Delta\)ABC có AB<AC vuông tại B, phân giác AD của góc A cắt BC tại D. từ D kẻ DH vuông góc với AC (H∈AC);và HD và AB kéo dài cắt tai I. Chứng minh rằng:
a) \(\Delta\)ABC = \(\Delta\)AHD
b) AD là trung trực của BH
c) \(\Delta\)DIC cân
d)BH//IC
e) AD\(\perp\)IC
g) BC > AD + AD - 2AB
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD
Cho \(\Delta ABC\) vuông tại \(A\) \(\left(AB< AC\right)\) có đường cao \(AH\)
\(a\)) Chứng minh \(\Delta HBA\sim\) \(\Delta ABC\)
\(b\)) Trên đoạn thẳng \(AH\) lấy điểm \(D\). Qua \(C\) vẽ đường thẳng vuông góc với \(BD\) cắt tia \(AH\) tại \(E\). Chứng minh \(\widehat{HBD}=\widehat{HEC}\) và \(BH.CH=HD.HE\)
\(c\)) Chứng minh \(\dfrac{EH}{AH}=\dfrac{EA}{AD}\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Cho tam giác ABC vuông có AB = 9cm , AC = 12cm . Vẽ phân giác BD
a) Tính BD , AD
b) Qua D vẽ đường thẳng vuông góc với BC tại H , cắt tia BA tại E . chứng minh \(\Delta ABC\) đồng dạng \(\Delta HDC\) . Tính diện tích \(\Delta ADE\)
Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)
cho \(\Delta\)ABC vuông tại A có AB>AC. Lấy điểm M là một điểm bất kì thuộc cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng ABtại diểm I, cắt đường thẳng AC tại điểm D. C/m \(\Delta\)ABC\(\sim\)\(\Delta\)MDC
giúp mình với ạTT
xét ΔABC và ΔMDC ta có
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{DMC}=90^o\left(gt\right)\)
=>ΔABC ∼ ΔMDC(g.g)
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^
Sao bổ sung hình vẽ không được vậy nè
Cho \(\Delta ABC\), vẽ \(\Delta ABD\) vuông tại B có AB = BD (A, D thuộc 2 nửa mặt phẳng đối nhau bờ là đường thẳng BC) và \(\Delta BCG\) vuông tại B có BC = BG (A, G cùng nằm trên mặt phẳng có bờ là đường thẳng BC). Chứng minh:
a) AG = CD
b) CD _|_ AG
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Ôn tập:
1. Tìm x, y:
2. Cho \(\Delta\)DMN vuông tại M, biết \(\widehat{D}\)= 37\(^o\) và DN= 10cm. Giải tam giác vuông DMN?
3. Cho \(\Delta\)ABC \(\perp\) tại B, AB= 8cm, \(\widehat{A}\)= 53\(^o\). Giải \(\Delta\)ABC.
a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)
\(BC=MH+HP=10\)
Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)
b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)
\(EF=EQ+QF=17\)
Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)
Bài 2: Cho \(\Delta\)ABC vuông tại A, có AB = 4 cm, BC = 5 cm. Tính đường cao AH
\(Pytago:\)
\(AC^2=BC^2-AB^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)
Áp dung HTL trong tam giác vuông ABC có :
\(AB\cdot AC=AH\cdot BC\\ \Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-4^2=9\)
hay \(AC=\sqrt{9}=3cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=BC\cdot AH\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Vậy: AH=2,4cm