Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Nhã Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 14:13

a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

b; AB=AH

DB=DH

=>AD là trung trực của BH

c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC

=>ΔDIC cân tại D

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

e: AD vuông góc BH

BH//IC

=>AD vuông góc IC

Phương Thảo
Xem chi tiết
Minh Tâm Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 20:21

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Nguyễn Nho Bảo Trí
Xem chi tiết
Nguyễn Nho Bảo Trí
7 tháng 5 2021 lúc 9:34

Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)

Nguyễn Nho Bảo Trí
7 tháng 5 2021 lúc 11:29

Giúp mình với 

Minh Anh Nguyễn
Xem chi tiết
Trầm Huỳnh
2 tháng 4 2023 lúc 10:37

câu hỏi của đề đâu bạn ơi?

 

乇尺尺のレ
2 tháng 4 2023 lúc 10:53

xét ΔABC và ΔMDC ta có

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{DMC}=90^o\left(gt\right)\)

=>ΔABC ∼ ΔMDC(g.g)

乇尺尺のレ
2 tháng 4 2023 lúc 10:58

hình vẽ

I B A C D M

:vvv
Xem chi tiết
Thu Thao
2 tháng 2 2021 lúc 14:30

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

Võ Văn Phùng
2 tháng 2 2021 lúc 23:07

Sao bổ sung hình vẽ không được vậy nè

Khách vãng lai đã xóa
Trang Nguyễn
Xem chi tiết
Phạm Thùy Trang
Xem chi tiết
Quyên Teo
Xem chi tiết
ILoveMath
29 tháng 10 2021 lúc 16:45

a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)

\(BC=MH+HP=10\)

Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)

b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)

\(EF=EQ+QF=17\)

Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)

  
Thỏ Nghịch Ngợm
Xem chi tiết
Minh Nhân
19 tháng 1 2021 lúc 21:27

\(Pytago:\)

\(AC^2=BC^2-AB^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)

Áp dung HTL trong tam giác vuông ABC có : 

\(AB\cdot AC=AH\cdot BC\\ \Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

Nguyễn Lê Phước Thịnh
19 tháng 1 2021 lúc 21:36

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-4^2=9\)

hay \(AC=\sqrt{9}=3cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=BC\cdot AH\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Vậy: AH=2,4cm