\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
Giúp mk với
\(\dfrac{2}{36a^2b^2-1};\dfrac{1}{6ab+1^2};\dfrac{1}{6ab-1^2}\)
\(\dfrac{x}{x^3-27};\dfrac{2x}{x^2-6x+9};\dfrac{1}{x^2+3x+9x}\)
\(\dfrac{x^2-x}{x^2-1};\dfrac{3x}{x^3+2x^2+x};2x\)
giúp với ạ
\(\dfrac{2}{36a^2b^2-1}=\dfrac{2}{\left(6ab-1\right)\left(6ab+1\right)}\\ \dfrac{1}{6ab+1}=\dfrac{6ab-1}{\left(6ab-1\right)\left(6ab+1\right)};\dfrac{1}{6ab-1}=\dfrac{6ab+1}{\left(6ab-1\right)\left(6ab+1\right)}\)
\(\dfrac{x}{x^3-27}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{2x}{x^2-6x+9}=\dfrac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{1}{x^2+3x+9}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\dfrac{x^2-x}{x^2-1}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x}{x+1}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2}\\ \dfrac{3x}{x^3+2x^2+x}=\dfrac{3x}{x\left(x^2+2x+1\right)}=\dfrac{3}{\left(x+1\right)^2}\\ 2x=\dfrac{2x\left(x+1\right)^2}{\left(x+1\right)^2}\)
\(\dfrac{1}{3x-3y};\dfrac{1}{x^2-2xy+y^{ }2}\)
\(\dfrac{3}{x^2-3x};\dfrac{5}{2x-6}\)
\(\dfrac{x}{x+3};\dfrac{1}{3-x};\dfrac{1}{x^2-9}\)
\(\dfrac{1}{x^2+xy};\dfrac{1}{xy-ỳ^2};\dfrac{2}{y^2-x^2}\)
giúp với ạ :((
\(a,\dfrac{1}{3x-3y}=\dfrac{x-y}{3\left(x-y\right)^2};\dfrac{1}{x^2-2xy+y^2}=\dfrac{3}{3\left(x-y\right)^2}\\ b,\dfrac{3}{x^2-3x}=\dfrac{6}{2x\left(x-3\right)};\dfrac{5}{2x-6}=\dfrac{5x}{2x\left(x-3\right)}\\ c,\dfrac{x}{x+3}=\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{3-x}=\dfrac{-x-3}{\left(x-3\right)\left(x+3\right)};\dfrac{1}{x^2-9}=\dfrac{1}{\left(x-3\right)\left(x+3\right)}\)
\(d,\dfrac{1}{x^2+xy}=\dfrac{xy-y^2}{xy\left(x+y\right)\left(x-y\right)};\dfrac{1}{xy-y^2}=\dfrac{x^2+xy}{xy\left(x-y\right)\left(x+y\right)};\dfrac{2}{y^2-x^2}=\dfrac{-2xy}{xy\left(x-y\right)\left(x+y\right)}\)
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
2) \(\dfrac{2x-1}{5-3x}=2\)
3) \(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
4) \(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
mng giúp mk bài này vs. Cảm ơn bạn nhiều
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
câu 1: (x-2)(x2+2x+4)+25x=x(x+5)(x-5)+8
câu 2: \(\dfrac{x+5}{4}\)+\(\dfrac{3+2x}{3}\)=\(\dfrac{6x-1}{3}\)-\(\dfrac{1-2x}{12}\)
câu 3:\(\dfrac{x-4}{3}\)-\(\dfrac{3x-1}{12}\)=\(\dfrac{3x+1}{4}\)+\(\dfrac{9x-2}{8}\)
Giúp mình với ai làm mà có lời giải rõ á là mình tym nha làm ơn
Câu 1:
\(\left(x-2\right)\left(x^2+2x+4\right)+25x=x\left(x+5\right)\left(x-5\right)+8\)
\(\Leftrightarrow x^3-8+25x=x\left(x^2-25\right)+8\)
\(\Leftrightarrow x^3-8+25x=x^3-25x+8\)
\(\Leftrightarrow x^3-8+25x-x^3+25x-8=0\)
\(\Leftrightarrow50x-16=0\)
\(\Leftrightarrow50x=16\)
\(\Leftrightarrow x=\dfrac{8}{25}\)
Câu 2 :
\(\dfrac{x+5}{4}+\dfrac{3+2x}{3}=\dfrac{6x-1}{3}-\dfrac{1-2x}{12}\)
<=> \(\dfrac{3\left(x+5\right)}{12}+\dfrac{4\left(3+2x\right)}{12}=\dfrac{4\left(6x-1\right)}{12}-\dfrac{1-2x}{12}\)
<=>\(\dfrac{3x+15+12+8x}{12}=\dfrac{24x-4-1+2x}{12}\)
<=> 3x + 15 + 12 + 8x = 24x - 4 - 1 +2x
<=> 11x+27 = 26x -5
<=> ( 26x - 5 ) - ( 11x + 27 ) = 0
<=> 15x - 32 = 0
<=> 15x = 32
<=> x = \(\dfrac{32}{15}\)
Câu 3:
x - 4/3 - 3x - 1/12 = 3x + 1/4 + 9x - 2/8
<=> 4x - 16 - 3x + 1/12 = 6x + 2 + 9x - 2/8
<=> x - 15/12 = 15x/8
<=> 8x - 120 = 180x
<=> 120 = -172x <=> x = -172/120 = -43/30
giúp mik 3 câu này với
a) \(\dfrac{10}{x+2}\);\(\dfrac{5}{2x-4}\);\(\dfrac{1}{6-3x}\)
b) \(\dfrac{1}{x+2}\);\(\dfrac{8}{2x-x^2}\)
c) \(\dfrac{4x^2-3x+5}{x^3-1}\);\(\dfrac{1-2x}{x^2+x+1}\);-2
Xin cảm ơn vì các bạn đã giúp mình
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
Rút gọn
a)\(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{2x}{1-x^2}\)
b)\(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c)\(\dfrac{2x^2-3x-9}{x^2-9}-\dfrac{x}{x+3}-\dfrac{x+3}{3-x}\)
d)\(\dfrac{x+3}{x-2}+\dfrac{x+2}{1-x}-\dfrac{4x-x^2}{x^2-3x+2}\)
giúp mik vs
cảm ơn <3
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
Mọi người giải nhanh bài này giúp mình với, mình sắp phải nộp bài rồi😓
Thực hiện phép tính sau:
1. \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\)
2. \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
3. \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\)
4.\(\dfrac{x+3}{x+1}+\dfrac{2x-1}{x-1}+\dfrac{x+5}{x^2-1}\)
1. Giải các phương trình sau:
a) \(\dfrac{7x-2}{3}=\dfrac{3x+1}{4}\) b) \(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)
2. Tìm A : \(\dfrac{x^2+2xy+y^2}{x-y}=\dfrac{A}{x^2-y^2}\)
Giúp em với mọi người ơiii
1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
Giúp mình với ạ
1) lim\(\dfrac{3x^2+5}{x^3-x+2}\)(x-->+∞)
2) lim\(\dfrac{2x^2\left(3x^2-5\right)^3\left(1-x\right)^5}{3x^{14}+x^2-1}\)(x-->-∞)
3) lim\(\dfrac{3x-\sqrt{2x^2+5}}{x^2-4}\)(x-->+∞)
1 ) \(lim_{x\rightarrow+\infty}\dfrac{3x^2+5}{x^3-x+2}=lim_{x\rightarrow+\infty}\dfrac{\dfrac{3}{x}+\dfrac{5}{x^3}}{1-\dfrac{1}{x^2}+\dfrac{2}{x^3}}=0\)
2 ) \(lim_{x\rightarrow-\infty}\dfrac{2x^2\left(3x^2-5\right)^3\left(1-x\right)^5}{3x^{14}+x^2-1}\) \(=lim_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}\left(3-\dfrac{5}{x^2}\right)^3\left(\dfrac{1}{x}-1\right)^5}{3+\dfrac{1}{x^{12}}-\dfrac{1}{x^{14}}}=0\)
3 ) \(lim_{x\rightarrow+\infty}\dfrac{3x-\sqrt{2x^2+5}}{x^2-4}=lim_{x\rightarrow+\infty}\dfrac{\left(7x^2-5\right)}{\left(3x+\sqrt{2x^2+5}\right)\left(x^2-4\right)}\)
\(=lim_{x\rightarrow+\infty}\dfrac{\dfrac{7}{x}-\dfrac{5}{x^3}}{\left(3+\sqrt{2+\dfrac{5}{x^2}}\right)\left(1-\dfrac{4}{x^2}\right)}=0\)