`1/(x-1)-(3x^2)/(x^3-1)=(2x)/(x^2+x+1)`
ĐK:`x ne 1`
`pt<=>(x^2+x+1)/(x^3-1)-(3x^2)/(x^3-1)=(2x(x-1))/(x^3-1)`
`<=>x^2+x+1-3x^2=2x^2-2x`
`<=>4x^2-3x-1=0`
`<=>4x^2-4x+x-1=0`
`<=>4x(x-1)+x-1=0`
`<=>(x-1)(4x+1)=0`
`x ne 1=>x-1 ne 0`
`<=>4x+1=0`
`<=>x=-1/4`
Vậy `S={-1/4}`
đk: x khác 1
\(\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x}{x^2+x+1}=0\)
<=> \(\dfrac{x^2+x+1-3x^2-2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
<=> \(x^2+x+1-3x^2-2x^2+2x=0\)
<=> -4x2 + 3x + 1 =0
<=> (1-x)(4x+1) = 0
Mà x khác 1
<=> 4x + 1 = 0
<=> \(x=\dfrac{-1}{4}\)
(x^2+x+1)/(x^3-1)-(3x^2)/(x^3-1)=(2x)*(x-1)/(x^3-1)
=>(x^2+x+1-3x^2-2x^2+2x)=0
=>(-4x^2+3x+1)=0
mua máy casio về bấm giải ptr ra