1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
giải các phương trình sau:
a.2x + 3 = 7x - 7
b. \(\dfrac{x}{x+2}+\dfrac{x-1}{x-2}=\dfrac{2x^2+x}{x^2-4}\)
c.|x-1|=1
d.6x - 2 = 2x + 10
e. \(\dfrac{x}{2}+\dfrac{x+1}{3}=\dfrac{5}{2}\)
f.|x-1|=x+2
g.9x - 6 = 3x+12
h.x(x-1)+3(x-1)=0
i.\(\dfrac{7}{x}+\dfrac{2}{x+1}=\dfrac{x+23}{x\left(x+1\right)}\)
j.8x - 3=6x +9
k. |x-1|-4=5
l.\(\dfrac{x-5}{x^2-16}+\dfrac{3}{x+4}=\dfrac{7}{x-4}\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
bài 2 giải các phương trình sau
b,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)
d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\) p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)
f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\) r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)
h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\) t,\(\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
j,\(\dfrac{5}{3x+2}=2x-1\) u,\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
w,\(\dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\) s, \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{2x}{\left(x-1\right)\left(x-3\right)}\)
ơ,\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\) v,\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
z,\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\) ư,\(\dfrac{x+2}{x-2}-\dfrac{-2}{x^2-2x}=\dfrac{1}{x}\)
o,\(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) ô,\(1-\dfrac{1}{1-x}=\dfrac{x^2}{x^2-1}\) zz,\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
Giải các phương trình:
\(a,\dfrac{5x^2+16}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
\(b,\dfrac{y+1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
Bài 1: Giải các phương trình sau:
a)\(\dfrac{x-3}{5}+\dfrac{1+2x}{3}=6\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Giải các phương trình sau:
\(h.\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(k.x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x-\dfrac{1-2x}{3}}{5}\)
giải các phương trình sau
1/ \(\dfrac{x-1}{2}-\dfrac{7x+3}{15}=\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\)
2/ \(\dfrac{2\left(3x+1\right)+1}{4}-5=\dfrac{2\left(3x-1\right)}{5}-\dfrac{3x+2}{10}\)
Giải các phương trình:
a,\(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
b,\(\dfrac{2x-1}{x^3+1}=\dfrac{2}{x^2-x+1}-\dfrac{1}{x+1}\)
giải các phương trình sau
a, 3x -(3x+2) =x+3
b, \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)
c, \(\left(x^2-3^2\right)+2\left(x-3\right)=0\)
d,\(\dfrac{1}{x-1}+\dfrac{2}{1+x}-\dfrac{4x+6}{x^2-1}=0\)