Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Anh
Xem chi tiết
Trần Ích Bách
Xem chi tiết
Tuấn Anh
12 tháng 2 2020 lúc 22:12

Mk chỉ làm đc câu a) thôi còn câu b mk cũng đang hỏi.

Đặt \(4-x=a\); \(x-2=b\) \(\Rightarrow\) \(a+b=2\)

\(\Leftrightarrow\)\(\left(a^3+b^3\right)\left(a^2+b^2\right)-a^2b^2\left(a+b\right)=32\)

\(\Leftrightarrow\)\(\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\left[\left(a+b\right)^2-2ab\right]-a^2b^2\left(a+b\right)=32\)

thay \(a+b=2\) ta có:

\(\left(8-6ab\right)\left(4-2ab\right)-2\left(ab\right)^2=32\)

\(\Leftrightarrow\) \(32-40ab+10\left(ab\right)^2=32\)

\(\Leftrightarrow\)\(10ab\left(-4+ab\right)+32-32=0\)

\(\Leftrightarrow\)\(ab\left(ab-4\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}ab=0\\ab-4=0\end{matrix}\right.\)

Với \(ab=0\) thì \(\left(4-x\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}4-x=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Với \(ab-4=0\) thì \(\left(4-x\right)\left(x-2\right)-4=0\)

\(\Leftrightarrow\)\(6x-8-x^2-4=0\)

\(\Leftrightarrow\)\(6x-12-x^2=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+12\right)=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+9+3\right)=0\)

\(\Leftrightarrow\)\(-\left(x-3\right)^2-3=0\) ( vô lí )

Vậy pt có tập nghiệm \(S=\left\{2;4\right\}\)

Khách vãng lai đã xóa
Tuấn Anh
Xem chi tiết
Edogawa Conan
Xem chi tiết
ghdoes
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Song Toàn Võ
4 tháng 5 2022 lúc 20:36

undefinedundefined

Nguyễn Khánh Toàn
Xem chi tiết
Lương Đại
31 tháng 3 2022 lúc 14:48

bạn tải ảnh về r up lại đi bạn

Lương Đại
31 tháng 3 2022 lúc 15:50

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

Eira
Xem chi tiết