Cho tam giác ABC vuông tại A có D là điểm bất kì trên BC. Gọi E,F là hình chiếu của D trên AB và AC
a, Kẻ đường cao AH. chứng minh tam giác EHF vuông
b, Tìm vị trí của D để 2017AD + 2018EF có GTNN
Cho tam giác ABC vuông tại A, điểm M bất kì trên cạnh huyền BC. Gọi D, E lần lượt là hình chiếu của M lên AB, AC
a,CMR tứ giác ADME là HCN
b,Kẻ đường cao AH của tam giác ABC. CMR góc DHE vuông
c,Tìm vị trí điểm M để đoạn thẳng DE có độ dài ngắn nhất
a: Xét tứ giác ADME có
gócADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b: góc AHM=góc AEM=góc ADM=90 độ
=>A,D,H,M,E cùng thuộc đường tròn đường kính AM
mà ED và AM cùng là đường kính của đường tròn đường kính AM(ED=AM)
nên H nằm trên đường tròn đường kính DE
=>góc DHE=90 độ
c: DE=AM
AM>=AH
=>DE>=AH
Dấu = xảy ra khi M trùng với H
=>M là chân đường cao kẻ từ A xuống BC
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi M là điểm bất kì trên BC ( M khác B,C) Gọi F,E lần lượt là hình chiếu của M trên AB, AC
a) Chứng minh tứ giác AEMF là hình chữ nhật
b) Gọi I là trung điểm của AM. Chứng minh E đối xứng F qua I
c) Xác định vị trí của M trên BC để độ dài của EF ngắn nhất
d) Chứng minh tam giác EHF là tam giác vuông
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh :tam giác ABH đồng dạng với tam giác CBA.
b) Cho BH = 4cm, BC = 13 cm. Tính độ dài đoạn AB.
c) Gọi E là điểm tùy ý trên cạnh AB, đường thẳng qua H và vuông góc với HE cắt cạnh
AC tại F. Chứng minh: AE. CH = AH. FC.
d) Tìm vị trí của điểm E trên cạnh AB để tam giác EHF có diện tích nhỏ nhất.
Cho tam giác ABC vuông tại A, đường cao AH. Lấy điểm D bất kỳ trên cạnh BC, kẻ de vuông góc với AC
a. chứng minh rằng EF= AD
b. gọi o là giao điểm cua EF và AD. chứng minh rằng HO = 1/2 EF
c. tìm vị trí của điểm D trên BC sao cho EF có độ dài nhỏ nhất
Bổ sung đề: Kẻ DF vuông góc với AB
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
b: Ta có: AEDF là hình chữ nhật
=>O là trung điểm chung của AD và EF và AD=EF(1)
O là trung điểm của AD
nên \(OA=DO=\dfrac{AD}{2}\left(2\right)\)
O là trung điểm của EF
=>\(OE=OF=\dfrac{FE}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra OA=DO=OE=OF=EF/2=AD/2
Ta có: ΔHAD vuông tại H
mà HO là đường trung tuyến
nên \(HO=\dfrac{1}{2}AD=\dfrac{1}{2}\cdot EF\)
c:
Ta có; ΔAHD vuông tại H
=>AD là cạnh huyền
=>AH<=AD
Để EF nhỏ nhất thì AD nhỏ nhất
mà AH<=AD
Dấu '=' xảy ra khi H trùng với D
Vậy: D là chân đường cao kẻ từ A xuống BC
Cho tam giác ABC vuông tại A, lấy điểm D bất kì trên cạnh BC. Gọi I và K lần lượt là hình chiếu B lên cạnh AB và AC
a) Chứng minh tứ giác AIDK là hình chữ nhật
b)Gọi O là giao điểm IKvà DA. Chứng minh tam giác OAK cân tại O
c) Gọi AH là đường cao củ tam giác ABC. Chứng minh tam giác IHK vuông
giúp mik vs
cảm ơn
a: Xét tứ giác AIDK có
góc AID=góc AKD=góc KAI=90 độ
nên AIDK là hình chữ nhật
b: Vì AIDK là hình chữ nhật
nên AD cắt KI tại trung điểm của mỗi đường và AD=KI
=>ΔOAK cân tại O
Cho tam giác ABC vuông tại A, M là điểm bất kì thuộc cạnh BC, D và E là hình chiếu của M trên AB và AC.
a. Chứng minh DE = AM.
b. F là điểm đối xứng với M qua AC. Chứng minh ADEF là hình bình hành.
c. AH là đường cao của tam giác ABC. Chứng minh tam giác DHE vuông.
d. Điểm M nằm ở vị trí nào trên BC để tứ giác ABMF là hình bình hành.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
Cho Tam giác ABC vuông tại A, đường cao AH,gọi E và F theo thứ tự là hình chiếu vuông góc của H lên AB, AC. a, chứng minh AE.AB=AF.AC B,tam giác AFE đồng dạng tam giác ABC C, chứng minh AH^3= AE.AF.BC D, BC cố định, tìm vị trí của A để EF có độ dài lớn nhất
a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AC=AH^2=AE.AB\)
b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)
c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAFE vuông tại A và ΔABC vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
AE⋅AB=AH2AE⋅AB=AH2(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
AF⋅AC=AH2AF⋅AC=AH2(2)
Từ (1) và (2) suy ra AE⋅AB=AF⋅ACAE⋅AB=AF⋅AC
b) Ta có: AE⋅AB=AF⋅ACAE⋅AB=AF⋅AC
nên AEAC=AFABAEAC=AFAB(cmt)
Do đó: ΔAFE∼∼ΔABC(c-g-c)
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Cho tam giác ABC vuông cân tại A, đường cao AH, điểm M di động trên đoạn thẳng AH. Gọi D và E lần lượt là hình chiếu vuông góc của M lên AB,AC và F là hình chiếu của D trên EH.
a/Chứng minh các điểm B,M,F thẳng hàng
b/Xác định vị trí điểm M trên AH để diện tích tam giác AFB lớn nhất