Phân tích đa thức thành nhân tử: \(\left(x^2-x+2\right)^2+\left(x-2\right)^2.\)
phân tích đa thức thành nhân tử
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)
\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
Đặt t=\(x^2+x\)
\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)
Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)
Ta có: \(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
Phân tích đa thức thành nhân tử: \(\left(x+5\right)^2+4\left(x+5\right)\left(x-5\right)+4\left(x^2-10x+25\right)=0\)
\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\)
=(x^2+8x)^2+23(x^2+8x)+135
Cái này ko phân tích được nha bạn
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)
Gọi `A=(x^2+8x+8)(x^2+8x+15)+15`
Đặt `t=x^2+8x+11,5`
`=>A=(t-3,5)(t+3,5)+15=t^2-3,5^2+15=t^2-2,75=(t-sqrt(2,75))(t+sqrt(2,75))=(x^2+8x+11,5-(sqrt11)/2)(x^2+8x+11,5+(sqrt11)/2)=(x^2+8x+(23-\sqrt11)/2)(x^2+8x+(23+\sqrt11)/2)`
Phân tích đa thức thành nhân tử
\(x^2+27+\left(x+3\right)\left(x-9\right)\)
x3+27+(x+3)(x+9)
= (x+3)(x2-3x+9)+(x+3)(x+9)
= (x+3)(x2-3x+9+x+9)
=(x+3)(x2-2x+18)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\\ =\left(x+3\right)\left(x^2-3x+9+x-9\right)\\ =\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
x3+27+(x+3)(x+9)
= (x+3)(x2-3x+9)+(x+3)(x+9)
= (x+3)(x2-3x+9+x+9)
=(x+3)(x2-2x+18)
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
Phân tích đa thức thành nhân tử:\(x\left(y^2-x^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
Phân tích đa thức thành nhân tử:\(x\left(y^2-x^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
Phân tích đa thức thành nhân tử: \(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(=2.\left[x^4+x^2+1+2x^3+2x+2x^2\right]-\left(4x^2+4x+1\right)-\left(x^4+4x^3+4x^2\right)\)
\(=x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
Chúc bạn học tốt.
Khi phân tích đa thức \(S = {x^6} - 8\) thành nhân tử thì được:
A. \(S = \left( {{x^2} + 2} \right)\left( {{x^4} - 2{x^2} + 4} \right)\)
B. \(S = \left( {{x^2} - 2} \right)\left( {{x^4} - 2{x^2} + 4} \right)\)
C. \(S = \left( {{x^2} - 2} \right)\left( {{x^4} + 2{x^2} + 4} \right)\)
D. \(S = \left( {x - 2} \right)\left( {{x^4} + 2{x^2} + 4} \right)\)
\(S=x^6-8\)
\(S=\left(x^2\right)^3-2^3\)
\(S=\left(x^2-2\right)\left(x^4+2x^2+4\right)\)
⇒ Chọn C
\(=\left(x^2\right)^3-2^3=\left(x^2-2\right)\left(x^4+2x^2+4\right)\\ =>C\)
Phân tích đa thức thành nhân tử : \(\left(x+2\right)^2-\left(x-2\right)^2\)
\(\left(x+2\right)^2-\left(x-2\right)^2\)
\(=\left(x+2-x+2\right)\left(x+2+x-2\right)\)
\(=4.2x\)
\(=8x\)
\(=\left[\left(x+2\right)-\left(x-2\right)\right]\cdot\left[\left(x+2\right)+\left(x-2\right)\right]\)
(x + 2)2 - (x - 2)2
= (x + 2 - x + 2).(x + 2 + x - 2)
= 4.2x
= 8x