Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anbert_An
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 7 2023 lúc 19:39

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

Văn Thị Kim Thoa
Xem chi tiết
Akai Haruma
15 tháng 10 2021 lúc 12:51

Lời giải:
 Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$14^2=a.4a$

$4a^2=196$

$a^2=49\Rightarrow a=7$ (do $a>0$)

Khi đó:

$BH=a=7$ (cm); $CH=4a=28$ (cm)

$BC=BH+CH=7+28=35$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)

Chu vi tam giác $ABC$:

$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)

 

Akai Haruma
15 tháng 10 2021 lúc 12:51

Hình vẽ:

Nguyễn Thị Thanh Phương
Xem chi tiết
Đào Thị Phương Mai
Xem chi tiết
Hoàng Như Quỳnh
23 tháng 6 2021 lúc 10:53

tham khảo của đỗ chí dũng câu hỏi của chi khánh

Khách vãng lai đã xóa
toan bai kho
Xem chi tiết
Xem chi tiết
meme
13 tháng 9 2023 lúc 13:58

Để tính chu vi của tam giác ABC, ta cần biết độ dài các cạnh của tam giác. Tuy nhiên, từ thông tin đã cho, chúng ta chỉ biết đường cao AH có độ dài là 14cm và tỉ lệ HB/HC là 1/4. Để tính chu vi, chúng ta cần thêm thông tin về độ dài các cạnh khác của tam giác.

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 13:59

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>HB*HB*4=14^2=196

=>HB=7(cm)

HC=7*4=28cm

BC=7+28=35cm

\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)

\(C_{ABC}=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35\left(cm\right)\)

Nguyễn Đức Trí
13 tháng 9 2023 lúc 14:06

Ta có :

\(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow\dfrac{HB}{1}=\dfrac{HC}{4}=\dfrac{HB.HC}{1.4}=\dfrac{AH^2}{4}=\dfrac{196}{4}=49\)

\(\Rightarrow\left\{{}\begin{matrix}HB=49.1=49\left(cm\right)\\HC=49.4=196\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow BC=HB+HC=49+196=245\left(cm\right)\)

\(AB^2=BH.BC=49.245=49.49.5\)

\(\Rightarrow AB=49\sqrt[]{5}\left(cm\right)\)

\(AC^2=HC.BC=196.245=196.49.5\)

\(\Rightarrow AC=98\sqrt[]{5}\left(cm\right)\)

Chu vi \(\Delta ABC\) :

\(AB+AC+BC=49\sqrt[]{5}+98\sqrt[]{5}+245=147\sqrt[]{5}+245\left(cm\right)\)

Phạm Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:09

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:11

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

tamanh nguyen
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Phạm Thị Ngọc Lan
Xem chi tiết