(a+b+c).(a2+b2+c2-ab-bc-ca)
a) Chứng minh =a3+b3+c3-3abc
b) Nếu cho a+b+c
Chứng minh a3+b3+c3=3abc
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
a )
`VP= (a+b)^3-3ab(a+b)`
`=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`
`=a^3+b^3 =VT (đpcm)`
b)
b) Ta có
`VT=a3+b3+c3−3abc`
`=(a+b)3−3ab(a+b)+c3−3abc`
`=[(a+b)3+c3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`
`=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`
a) Ta có:
`VP= (a+b)^3-3ab(a+b)`
`=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`
`=a^3 + b^3=VT(dpcm)`
b) Ta có
`VT=a^3+b^3+c^3−3abc`
`=(a+b)^3−3ab(a+b)+c^3−3abc`
`=[(a+b)^3+c^3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`
`=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`
Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)
b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)
a) Áp dụng nhiều lần công thức \(\left(x+y\right)^3=x^3-y^3+3xy\left(x+y\right)\), ta có:
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=a^3+b^3+3ab\left(a+b\right)+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(Đpcm\right)\)
b) Ta có:
\(a^3+b^3+c^3-3abc\)
\(=a^3+3ab\left(a+b\right)+b^2+c^3-3abc-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
Mình nghĩ bằng thế này mới đúng, bạn chắc ghi sai đề rồi
a) Ta có: (a + b + c)3 - a3 - b3 - c3 = [ (a + b + c)3 - a3 ] - ( b3 + c3)
= (a + b + c - a) ( a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + ab + ac + a2) - (b + c) ( b2 - bc + c3)
= (b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac) - (b + c) ( b2 - bc + c3)
= ( b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac - b2 + bc - c3)
= ( b + c) ( 3a2 + 3ab + 3bc + 3ac)
= 3 (b + c) [a (a + b) + c (a + b)]
= 3 (b + c) (a + b) (a + c) (đpcm)
C/m rằng với mọi a,b,c luôn có: ( a+b+c)(a2+b2+c2-ab-bc-ca)=a3+b3+c3-3abc
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bca
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
c/m: a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)
Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
a: Ta có: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a+b+c=0\)