Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thỏ bông
Xem chi tiết
Khánh
Xem chi tiết
Edogawa Conan
28 tháng 10 2019 lúc 21:26

Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24

A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4

A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2  + 4 \(\ge\)\(\forall\)x;y;z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)

Vậy MinA = 4 <=> x=  1 ; y = -3 và z = -1/3

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
28 tháng 10 2019 lúc 21:31

\(x^2+2y^2+9z^2-2x+12y+6z+24\)

\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)

Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)

Vậy................................

Khách vãng lai đã xóa
Huỳnh Trần Thảo Nguyên
Xem chi tiết
Cristiano Ronaldo
Xem chi tiết
Nguyễn Anh Quân
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Cristiano Ronaldo
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

Wanna.B Linah
Xem chi tiết
Lê Thanh Nhàn
18 tháng 9 2019 lúc 18:58

A = x2 - 4x + 1 = (x2 - 2.x.2 + 4) - 3 = (x - 2)2 - 3 \(\ge\) -3

Vậy: GTNN của A là -3 (tại x = 2)

B = -2x2 + 2x = -2(x2 - x) = -2\(\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)

= -2\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\) \(\le\frac{1}{2}\)

Vậy: GTLN của B là \(\frac{1}{2}\) tại x = \(\frac{1}{2}\)

Lê Thanh Nhàn
18 tháng 9 2019 lúc 19:03

C = x2 + y2 + 2x + 2y = (x2 + 2x + 1) + (y2 + 2y + 1) - 2

= (x + 1)2 + (y + 1)2 - 2 \(\ge\) -2

Vậy: GTNN của C là -2 tại x = -1 ; y = -1

D = x2 - 4xy + 5y2 - y = (x2 - 4xy + 4y2) + (y2 - y + \(\frac{1}{4}\)) - \(\frac{1}{4}\)

= (x - 2y)2 + (y - \(\frac{1}{2}\))2 - \(\frac{1}{2}\ge-\frac{1}{2}\)

Vậy: GTNN của D là \(\frac{-1}{4}\) tại x = 1 ; y = \(\frac{1}{2}\)

nhi trang
Xem chi tiết
Hoàng Vũ
Xem chi tiết
s2 Lắc Lư  s2
11 tháng 5 2017 lúc 21:05

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{2x+y+z}{2}\)

cmtt => GTLN

alibaba nguyễn
12 tháng 5 2017 lúc 11:19

Tìm max:

Ta có:

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{2x+y+z}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt{2y+zx}\le\frac{2y+z+x}{2}\left(2\right)\\\sqrt{2z+xy}\le\frac{2z+x+y}{2}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(A\le\frac{2x+y+z}{2}+\frac{2y+z+x}{2}+\frac{2z+x+y}{2}=2\left(x+y+z\right)=4\)

Dấu = xảy ra khi \(x=y=z=\frac{2}{3}\)

Tìm min:

Ta có: \(\hept{\begin{cases}\sqrt{2x+yz}\ge0\\\sqrt{2y+zx}\ge0\\\sqrt{2z+xy}\ge0\end{cases}}\)

\(\Rightarrow A\ge0\)

Dấu = xảy ra khi \(\left(x,y,z\right)=\left(-2,2,2;2,-2,2;2,2,-2\right)\)

Vỹ Ly
Xem chi tiết
_Guiltykamikk_
14 tháng 6 2018 lúc 10:57

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

_Guiltykamikk_
14 tháng 6 2018 lúc 11:03

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

Công Mạnh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2022 lúc 23:01

Bài 2: 

a: \(=-\left(x^2+2x-100\right)\)

\(=-\left(x^2+2x+1-101\right)\)

\(=-\left(x+1\right)^2+101< =101\)

Dấu = xảy ra khi x=-1

b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)

Dấu = xảy ra khi x=1/6

c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)

\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)

\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)

Dấu = xảy ra khi x=3 và y=-1