Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 15:46

a.

\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:

\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)

\(\Leftrightarrow3a^2=b^2\)

\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 15:47

b.

\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

Lặp lại cách làm câu a

hoài phan
Xem chi tiết
Thắng Nguyễn
4 tháng 3 2018 lúc 12:29

\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)

ĐK: \(x\ge-\frac{1}{3}\)

\(\Leftrightarrow5x^2+4x-9-\left(4x\sqrt{x^2+x+2}-8\right)-\left(4\sqrt{3x+1}-8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{x^2\left(x^2+x+2\right)-4}{x\sqrt{x^2+x+2}+2}-4\frac{3x+1-4}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{\left(x-1\right)\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+9-4\frac{\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3}{\sqrt{3x+1}+2}\right)=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Kiệt Nguyễn
16 tháng 4 2020 lúc 15:00

\(ĐKXĐ:x\ge\frac{-1}{3}\)

\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)

\(\Leftrightarrow\left(x^2+x+2-4x\sqrt{x^2+x+2}+4x\right)\)\(+\left(3x+1-4\sqrt{3x+1}+4\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x+2}-2x\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=2x\\\sqrt{3x+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x^2+x+2=4x\\3x+1=4\end{cases}}\Leftrightarrow x=1\)

Vậy nghiệm duy nhất của phương trình là x = 1

Khách vãng lai đã xóa
hoài phan
4 tháng 3 2018 lúc 17:18
Thks bạn :)
Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:58

a.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)

Pt trở thành:

\(729\left(t^4-2t^2+1\right)+8t=36\)

\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)

\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)

Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:59

b.

ĐKXĐ: ...

\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)

Đặt \(\sqrt{10+4x-x^2}=t\ge0\)

\(\Rightarrow-3t^2-5t+42=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{10+4x-x^2}=3\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow x=...\)

Tô Thu Huyền
Xem chi tiết
Nguyễn Linh Chi
21 tháng 10 2018 lúc 10:56

a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)

\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-4x+1=x+1\)

\(\Leftrightarrow x^2-4x-x=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện

Vậy x=0 hoặc x=5

2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)

Đk: x>=3 hoặc x=1

pt  (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )

<=> x-1=0

<=> x=1 ( thỏa mãn điều kiện)

Lương Ngọc Anh
Xem chi tiết
Kiều Vũ Linh
29 tháng 6 2023 lúc 7:57

a) 3x² - 4x + 1 = 0

a = 3; b = -4; c = 1

∆ = b² - 4ac = (-4)² - 4.3.1 = 4 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = [-(-4) + 2]/(2.3) = 1

x₂ = (-b - √∆)/2a = [-(-4) - 2]/(2.3) = 1/3

Vậy S = {1/3; 1}

b) -4x² + 4x + 1 = 0

a = -4; b = 4; c = 1

∆ = b² - 4ac = 4² - 4.(-4).1 = 32 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = (-4 + 4√2)/[2.(-4)] = (1 - √2)/2

x₂ = (-b - √∆)/2a = (-4 - 4√2)/[2.(-4)] = (1 + √2)/2

Vậy S = {(1 - √2)/2; (1 + √2)/2}

d) x² - 8x + 2 = 0

a = 1; b = -√8; c = 2

∆ = b² - 4ac = 8 - 8 = 0

Phương trình có nghiệm kép:

x₁ = x₂ = -b/2a = √8/2 = √2

Vậy S = {√2}

e) x² - 6x + 5 = 0

a = 1; b = -6; c = 5

∆ = b² - 4ac = 36 - 20 = 16 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = (6 + 4)/2 = 5

x₂ = (-b - √∆)/2a = (6 - 4)/2 = 1

Vậy S = {1; 5}

Kiên M
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2019 lúc 17:46

a/ \(\Delta=\left(3\sqrt{3}\right)^2-4.4\left(-6\right)=123\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3\sqrt{3}+\sqrt{123}}{8}\\x_2=\frac{3\sqrt{3}-\sqrt{123}}{8}\end{matrix}\right.\)

b/ \(\Delta=9-4\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)=25\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\x_2=\frac{3-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\end{matrix}\right.\)

Nguyễn Thành Trương
16 tháng 3 2019 lúc 19:02

\(a)4x^2-3\sqrt{3}x-6=0\)

Có: \(a=4;b=-3\sqrt{3};c=-6\)

\(\Delta=b^2-4ac\\ =\left(-3\sqrt{3}\right)^2-4.4.\left(-6\right)\\ =123>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)+\sqrt{123}}{2.4}=\frac{3\sqrt{3}+\sqrt{123}}{8}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)-\sqrt{123}}{2.4}=\frac{3-\sqrt{123}}{8}\)

\(b)\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)

Có: \(a=1-\sqrt{5};b=-3;c=\sqrt{5}+1\)

\(\Delta=b^2-4ac\\ =\left(-3\right)^2-4.\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\\ =25>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\ x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\)

Julian Edward
16 tháng 3 2019 lúc 17:39

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

Nguyễn Minh Tài
Xem chi tiết