Giải PT:
a) \(4x^2-3\sqrt{3}x-6=0\)
b) \(\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)
Giải pt :
a) \(x-7\sqrt{x}-8=0\)
b) \(x+5-5\sqrt{x-1}=0\)
c) \(\left(2x^2+x\right)^2-13\left(2x^2+x\right)+12=0\)
Giải phương trình bằng 2 cách:
a,
\(x^2-3x+1-\sqrt{2x-1}=0\)
b,
\(\left(x+4\right)^2-6\sqrt{x^3+3x}=13\)
Giải phương trình:
1, \(2\left(x^2-x+1\right)^2+x^3+1=\left(x+1\right)^2\)
2, \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
3, \(x^2+\sqrt{x+5}=5\)
B1:Giải phương trình
a/\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
b/\(\sqrt{3x+7}-\sqrt{x+1}=2\)
c/\(x^2+2=2\sqrt{x^3+1}\)
d/\(2\left(8x+7\right)^2\left(4x+3\right)\left(x+1\right)=7\)
B2:Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+z^2=1\\xy+yz+zx=1\end{matrix}\right.\)
Giải các phương trình sau:
a) \(\sqrt{x+2+3\sqrt{2x-5}}\) + \(\sqrt{x-2-\sqrt{2x-5}}\) = 2\(\sqrt{2}\)
b)\(\sqrt{3x+1}\) - \(\sqrt{6-x}\) + 3x\(^2\) - 14x - 8 = 0
giải pt
a)\(\dfrac{1}{x+1}+\dfrac{3}{2x+1}=\dfrac{8}{x-2}\)
b)\(\sqrt{2x+1}+\sqrt{3-x}=\sqrt{3x+5}\)
bài 1: đưa các phương trình sau về dạng ax2+bx+c=0 rồi chỉ ro hệ số a,b,c:
a)3x2 -5x+1=2x-3
b)\(\dfrac{3}{5}x^2-4x-3=3x+\dfrac{1}{3}\)
c) \(-\sqrt{3}x^2+x-5=\sqrt{3}x+\sqrt{2}\)
d)x2 -5(m+1) x=2-m2(m là tham số)
bài 1 ; giải pt
a,\(\left(2x-3\right)^2=\left(x+1\right)^2\)
b, \(\left(x+2\right)\left(5-3x\right)=x^2+4x+4\)
c,\(x^2-9x+20=0\)
d,\(x^2+8x+16=25\)