Tìm x biết 3x+3x+1+3x+2=117
a) 3x + 3x+1 + 3x+2 =117
b) 3 + 4 (x - 10) = 32 + 6
a)
\(3^x+3^{x+1}+3^{x+2}=117\\ \Leftrightarrow3^x+3.3^x+9.3^x=117\\ 13.3^x=117\\ \Leftrightarrow3^x=9\\ \Leftrightarrow3^x=3^2\\ \Leftrightarrow x=2\)
b)
\(3+4\left(x-10\right)=3^2+6\\ \Leftrightarrow3+4\left(x-10\right)=15\\ \Leftrightarrow4\left(x-10\right)=12\\ \Leftrightarrow x-10=3\\ \Leftrightarrow x=13\)
a) \(3^x+3^{x+1}+3^{x+2}=117\)
\(3^x+3^x.3+3^x.3^2=117\)
\(3^x.\left(1+3+3^2\right)=117\)
\(3^x.13=117\)
\(3^x=9\)
\(x=2\)
b) \(3+4\left(x-10\right)=3^2+6\)
\(3+4x-40=9+6\)
\(4x=15+40-3\)
\(4x=52\)
\(x=13\)
tìm x y biết x/5 = x/6 và -3x - 4y = -117
\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{-3x}{-15}=\dfrac{4y}{24}\)
Áp dụng t/c của DS bằng nhau, ta có: \(\dfrac{-3x-4y}{-15-24}=\dfrac{-117}{-39}=3\)
\(\dfrac{-3x}{-15}=3\Rightarrow x=15\)
\(\dfrac{4y}{24}=3\Rightarrow y=18\)
\(3x+3x+1+3x+2=117\)
tìm x
3x+3x+1+3x+2=177
9x+3=117
9x=117-3
9x=114
x=114/9
\(3x+3x+1+3x+2=117\)
\(\Leftrightarrow\left(3x+3x+3x\right)+\left(1+2\right)=117\)
\(\Leftrightarrow9x+3=117\)\(\Rightarrow9x=114\Rightarrow x=\frac{114}{9}\)
\(\text{Vậy x=}\frac{114}{9}\)
3x+3x+1+3x+2=117
=>3x.3 +(1+2) = 117
=>9x +3 = 117
=> 9x = 114
=> x = \(\frac{38}{3}\)
3x + 3x+1 + 3x+2 = 117
\(3^x+3^{x+1}+3^{x+2}=117\)
\(3^x+3^x.3+3^x.3^2=117\)
\(3^x\left(1+3+3^2\right)=117\)
\(3^x.13=117\)
\(3^x=9\)
\(\Rightarrow x=2\)
`3^{x}+3^{x+1}+3^{x+2}=117`
`3^{x}.(1+3+3^{2})=117`
`3^{x}.13=117`
`3^{x}=117:13=9`
`3^{x}=3^{2}`
`x=2`
\(3^x+3^{x+1}+3^{x+2}=117\)
\(3^x\left(1+3+3^2\right)=117\)
\(3^x\times13=117\)
\(3^x=9\)
\(3^x=3^2\)
\(x=2\)
bài 1: Tính giá trị biểu thức
A = x(3x-y)-(3x+1)y tại x = 4/3; y = -1
B = \(3\frac{1}{117}.\frac{1}{119}-\frac{4}{117}.5\frac{118}{119}-\frac{8}{39}\)
Bài 2: Tìm m và n để hai đa thức đồng nhất:
f(x)=(m-1)x^2+3x+1
g(x) = x^2-nx+1
Bài 1:
Thay \(x=\frac{4}{3};y=-1\)vào biểu thức A, ta được:
\(A=\frac{4}{3}\cdot\left[3\cdot\frac{4}{3}-\left(-1\right)\right]-\left(3\cdot\frac{4}{3}+1\right)\left(-1\right)\)
\(A=\frac{20}{3}+5=\frac{35}{3}\)
Vậy khi \(x=\frac{4}{3};y=-1\)thì A=\(\frac{35}{3}\)
\(B=3\frac{1}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot5\frac{118}{119}-\frac{8}{39}\)
\(B=\frac{352}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot\frac{713}{119}-\frac{8}{39}=-\frac{412}{1071}\)
Tìm \(x:\)
\(3x+3x+1+3x+2=117\)
\(3x+3x+1+3x+2=117\)
\(\Rightarrow3x+3x+3x=117-1-2\)
\(\Rightarrow3x+3x+3x=114\)
\(\Rightarrow x.\left(3+3+3\right)=114\)
\(\Rightarrow x.9=114\)
\(\Rightarrow x=\dfrac{38}{3}\)
Vậy \(x=\dfrac{38}{3}\)
=> 3x+3x+3x+1+2=117
=>9x+3=117
=>9x=117-3=114
=> x=\(\dfrac{114}{9}\)
\(3x+3x+1+3x+2=117\)
\(\Leftrightarrow9x=114\)
\(\Leftrightarrow x=\dfrac{38}{3}\)
Tìm x; biết: 3x + 3x+1 + 3x+2 + 3x+3 = 1080
đặt 3x ra ngoài bạn nhé bàn phím mik hỏng rồi ;-;
$\Rightarrow 3^x(1+3+3^2+3^3)=1080$
$\Rightarrow 3^x.40=1080$
$\Rightarrow 3^x=27=3^3$
$\Rightarrow x=3$
\(3^x+3^{x+1}+3^{x+2}+3^{x+3}=1080\)
\(\Rightarrow3^x+3^x.3^1+3^x.3^2+3^x.3^3=1080\)
\(3^x.\left(1+3+9+27\right)=1080\)
\(3^x.40=1080\)
\(3^x=27\)
\(3^x=3^3\)
Vậy: x = 3
Tìm x, y, z biết
3x=5y;7y=9z và x-y+z=117
Ta sẽ đưa các tích về 1 dãy tỉ số
\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x}{15}=\frac{y}{9},7y=9z\Leftrightarrow\frac{y}{9}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7},x-y+z=117\left(gt\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau cho dãy tỉ số trên ta được
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\Rightarrow x=15.9=135,y=9.9=81,z=7.9=63\)
Vậy \(x=135,y=81,z=63\)
Ta có: \(3x=5y=\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{15}=\frac{y}{9}\)
\(7y=9z=\frac{y}{9}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\)
\(\Rightarrow\frac{x}{15}=9\Rightarrow x=9\cdot15=135\)
\(\frac{y}{9}=9\Rightarrow y=9\cdot9=81\)
\(\frac{z}{7}=9\Rightarrow z=9\cdot7=63\)
Vậy x=135, y=81 và z=63
TÌM X BIẾT :
a/ 3x ( 3x -1 ) - ( 3x + 1 ) ( 3x - 1 ) = 0
b/ \(x^2\) - 5x + 25 - 5x = 0
KHÔNG BỎ BƯỚC Ạ !
a: Ta có: \(3x\left(3x-1\right)-\left(3x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow9x^2-3x-9x^2+1=0\)
\(\Leftrightarrow3x=1\)
hay \(x=\dfrac{1}{3}\)
b: Ta có: \(x^2-5x+25-5x=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
hay x=5