Giải hệ pt
X + y = 900
1,1 x + 1,12y = 1000
giải/hệ/pt
x+y=500
\(\dfrac{8}{10}x+\dfrac{9}{10}y=420\)
\(\left\{{}\begin{matrix}x+y=500\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\\dfrac{8}{10}\left(500-y\right)+\dfrac{9}{10}y=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\400+\dfrac{y}{10}=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y=300\\y=200\end{matrix}\right.\)
Vậy (x,y)=(300,200)
hpt <=> \(\left\{{}\begin{matrix}\dfrac{8}{10}x+\dfrac{8}{10}y=400\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x+y=500\\\dfrac{1}{10}y=20\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x+y=500\\y=200\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=300\\y=200\end{matrix}\right.\)
giải hệ pt
x+y + 1 /x + 1 /y = 4
x^3 + y^3 + 1/x^3 + 1/y^3 =4
ĐKXĐ: \(x,y\ne0\)\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=4\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=4\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}\right)-3\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)
Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(a,b\ne0\right)\)
\(\Rightarrow hpt\) trở thành:
\(\left\{{}\begin{matrix}a+b=4\left(1\right)\\a^3+b^3-3a-3b=4\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow a=4-b\) Thay vào (2) ta được:
\(\left(4-b\right)^3+b^3-3\left(4-b\right)-3b=4\Leftrightarrow64-48b+12b^2-b^3+b^3-12+3b-3b-4=0\Leftrightarrow12b^2-48b+60=0\Leftrightarrow b^2-4b+5=0\Leftrightarrow b^2-4b+4+1=0\Leftrightarrow\left(b-2\right)^2+1=0\) Vô lí \(\Rightarrow\) ko có a,b \(\Rightarrow\) ko có x,y
Vậy hpt vô nghiệm
giải/hệ/pt
x+y=80
2x+3y=198
\(\left\{{}\begin{matrix}x+y=80\\2x+3y=198\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=240\\2x+3y=198\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=80\\x=240-198=42\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=42\\y=38\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=80\\2x+3y=198\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=160\\2x+3y=198\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=38\\2x+3\cdot38=198\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=38\\2x=84\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=38\\x=42\end{matrix}\right.\)
Vậy (42;38) là nghiệm
\(\left\{{}\begin{matrix}x+y=775\\1,18x+1,12y=889\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1.18x+1.18y=914.5\\1.18x+1.12y=889\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=425\\x=350\end{matrix}\right.\)
giải hệ PT
x-2y=3
2x+3y=-1
\(\left\{{}\begin{matrix}x-2y=3\\2x+3y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2\left(-1\right)\\y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=6\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3+2y=3-2=1\end{matrix}\right.\)
Giải pt
x^2-4=2(x-2)(x+3)
\(x^2-4=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow x^2-4=2\left(x^2+3x-2x-6\right)\)
\(\Leftrightarrow x^2-4=2x^2+2x-12\)
\(\Leftrightarrow x^2-2x^2-2x=-12+4\)
\(\Leftrightarrow-x^2-2x=-8\)
\(\Leftrightarrow-x^2-2x+8=0\)
\(\Leftrightarrow-x^2+2x-4x+8=0\)
\(\Leftrightarrow-x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(-x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x-4=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
\(x^2-4=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-2\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x+2\right)-2\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-2x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
giải pt
x+1/90+x+2/80=x+3/70+x+4/60
cho x^1000+y^1000=a; x^2000+y^2000=2b/3; x^5000+y^5000=c/36; tìm liên hệ giữa a,b,c
đặt x^1000=m,y^1000=n
m+n=a
m2+n2=2b/3 =>a2=2b/3+2mn =>mn=a2-2b/3
m5+n5=c/36 <=>(n+m)[(m+n)4-5mn(m+n)2+5m2n2]=c/36
<=>a.[a4-5(a2-2b/3)a2+5(a2-2b/3)2 ]=c/36 <=>a(a4-10a2b/3+20b2/9)=c/36 <=>a(9a4-30a2b+20b2)=c/4
1) Tìm m để mỗi pt có nghiệm kép
a) mx^2 + (2m-1)x + m+2=0
b) 2x^2 -(4m+3)x +2m^2 -1=0
2) giải pt
x^2 -(m-1)x - 2m-2=0
Bài 1:
a) Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot m\cdot\left(m+2\right)\)
\(\Leftrightarrow\Delta=4m^2-4m+1-4m^2-8m\)
\(\Leftrightarrow\Delta=-12m+1\)
Để phương trình có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow-12m+1=0\)
\(\Leftrightarrow-12m=-1\)
hay \(m=\dfrac{1}{12}\)
b) Ta có: \(\Delta=\left(4m+3\right)^2-4\cdot2\cdot\left(2m^2-1\right)\)
\(\Leftrightarrow\Delta=16m^2+24m+9-16m^2+8\)
\(\Leftrightarrow\Delta=24m+17\)
Để phương trình có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow24m+17=0\)
\(\Leftrightarrow24m=-17\)
hay \(m=-\dfrac{17}{24}\)