Chứng minh đa thức \(x^4+x^3+4x^2+3x+3\) vô nghiệm
cho đa thức p(x)=-8x^3+3x^4-x^2+5x^2-2020+6x^3-3x^4+2025+2x^3 chứng minh đa thức p(x) vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
chứng minh đa thức f(x)=-4x^4+3x^3-2x^2+x-1 không có nghiệm nguyên
Giả sử x=a là nghiệm nguyên f(a)
\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)
Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)
Mà \(-4a^4+4a^3-2a^2⋮2\)
\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)
\(\Rightarrow1⋮2\left(VL\right)\)
Vậy không tồn tại nghiệm nguyên của f(x)
Chứng minh các đa thức sau vô nghiệm:
a. A(x) = x^4 - 8x^2 +30
b. B(x) = 4x^2 - 4x +3
c. C(x) = x^2 - 3x +7
d. D(x) = -x^2 - 7x - 20
e. H(x) = 2x^2 - 10x+20
Chứng minh đa thức sau vô nghiệm
P(x)=x4+3x2+3
Vì x4 \(\ge\) 0 với mọi x \(\in\) R
3x2 \(\ge\) 0 với mọi x \(\in\) R
=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R
=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R
=>P(x) vô nghiệm
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
cho đa thức Q(x)=\(^{-3^4}\)+\(4x^3\) +\(2x^2\) +\(\dfrac{2}{3}\) -3x-\(2x^4\) -\(4x^3\) +\(8x^4\) +1+3x
a) thu gọn Q(x)
b) chứng minh Q(x) ko có nghiệm
a: \(Q\left(x\right)=-3x^4-2x^4+8x^4+4x^3-4x^3+2x^2-3x+3x+\dfrac{5}{3}\)
=3x^4+2x^2+5/3
b: Q(x)=x^2(3x^2+2)+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
chứng minh đa thức x2-3x+3 vô nghiệm
x^2 - 3x + 3
=x^2 - 1,5x - 1,5x + 2,25+0,75
=x(x-1,5)-1,5(x-1,5)+0,75
=(x-1,5)^2 + 0,75 >= 0,75 => vô nghiệm
chứng tỏ đa thức M(x)=x^4+2x^3+4x^2-1 vô nghiệm
Chứng minh đa thức f(x)=-4x^4+3x^3-2x^2+x-1 không có nghiệm nguyên
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm