viết mỗi biểu thức sau dưới dạng tổng hoặc hiệu hai bình phương:
a) z2-6z+5-t2-4t
b) 4x2-12x-y2+2y+1
Viết biểu thức sau dưới dạng tổng của hai bình phương:
a. x2-2x+2+4y2+4y
b. 4x2+y2+12x+4y+13
c. x2+17+4y2+8x+4y
d. 4x2-12x+y2-4y+13
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
a: \(x^2-2x+2+4y^2+4y\)
\(=x^2-2x+1+4y^2+4y+1\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
b: \(4x^2+12x+y^2+4y+13\)
\(=4x^2+12x+9+y^2+4y+4\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
c: \(x^2+8x+4y^2+4y+17\)
\(=x^2+8x+16+4y^2+4y+1\)
\(=\left(x+4\right)^2+\left(2y+1\right)^2\)
d: \(4x^2-12x+y^2-4y+13\)
\(=4x^2-12x+9+y^2-4y+4\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
1. Viết mỗi biểu thức sau về dạng tổng hoặc hiệu hai bình phương:
a) z2 - 6z + 5 - t2 - 4t
b) x2 - 2xy + 2y2 + 2y + 1
c) 4x2 - 12x - y2 + 2y + 8
2. Viết mỗi biểu thức sau dưới dạng hiệu hai bình phương:
a) (x + y + 4)(x + y - 4)
b) (x - y + 6)(x + y - 6)
c) (y + 2z - 3)(y - 2z - 3)
d) (x + 2y + 3z)(2y + 3z - x)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
:v dễ mà có trong nâng cao mới hc qua :3
a, x2+10x+26+y2+2y
=(x2+2.x.5+52)+(12+2.1.y+y2)
=(x+5)2+(y+1)2
b, x2−2xy+2y2+2y+1
=x2−2xy+y2+y2+2y+1
=(x2−2.x.y+y2)+(y2+2.y.1+12)
=(x−y)2+(y+1)2
c,z2−6z+5−t2−4t
=−(t2+4t−z2+6z−5)
=−(t2+2.t.2+22−z2+2.z.3−32)
=−((t2+2.t.2+22)−(z2−2.z.3+32))
=−((t+2)2−(z−3)2)
=(z−3)2−(t+2)2
Viết mỗi biểu thức sau dưới dạng tổng hoặc hiệu hai bình phương
1 x^2 + 10x + 26 + y^2 + 2y
2 z^2 - 6z +13 + t^2 +4t
3 x^2 - 2xy + 2y^2 +2y + 1
4 4x^2 + 2z^2 - 4xz - 2z + 1
5 4x^2 - 12x - y^2 + 2y + 8
1) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x2 + 5x + 5x + 25) + (y2 + y + y + 1)
= x(x + 5) + 5(x + 5) + y(y + 1) + (y + 1)
= (x + 5)2 + (y + 1)2
2) z2 - 6z + 13 + t2 + 4t
= (z2 - 6z + 9) + (t2 + 4t + 4)
= (z2 - 3z - 3z + 9) + (t2 + 2t + 2t + 4)
= z(z - 3) - 3(z - 3) + t(t + 2) + 2(t + 2)
= (z - 3)2 + (t + 2)2
3) x2 - 2xy + 2y2 + 2y + 1
(x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - xy - xy + y2) + (y2 + y + y +1)
= x(x - y) - y(x - y) + y(y + 1) + (y + 1)
= (x - y)2 + (y + 1)2
Viết các biểu thức sau dưới dạng tổng hoặc hiệu của 2 bình phương:
z2-6z+5-t2-4t4x2-12x-y2+2y+1x2-2xy+2y2+2y+1\(1.z^2-6z+5-t^2-4t\)
\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(3,x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
Viết mỗi biểu thức sau dưới dạng tổng hoặc hiệu của 2 bình phương
a) x2+10x+26+y2+2y
b) z2-6z+5-t2-4t
c)x2-2xy+2y2+2y+1
d) 4x2-12x-y2+2y+8
a) x2+10x+26+y2+2y
=x2+10x+25+y2+2y+1
=(x+5)2+(y+1)2
b) z2-6z+5-t2-4t
=z2-6z+9-t2-4t-4
=(z-3)2-(t2+4t+4)
=(z-3)2-(t+2)2
c)x2-2xy+2y2+2y+1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
d) 4x2-12x-y2+2y+8
=4x2-12x+9-y2+2y-1
=(2x-3)2-(y2-2y+1)
=(2x-3)2-(y-1)2
Viết các biểu thức sau dưới dạng lập phương một tổng hoặc lập phương một hiệu hoặc tổng hai lập phương hoặc hiệu hai lập phương:
a) x3 + 6x2y + 12xy2 + 8y3
b) x3 - 3x2 + 3x -1
\(a,x^3+6x^2y+12xy^2+8y^3\\ =x^3+3.2x^2+3.2^2.x+\left(2y\right)^3\\ =\left(x+2y\right)^3\)
\(b,x^3-3x^2+3x-1\\ =x^3-3x^2.1+3x.1^2-1^3\\ =\left(x-1\right)^3\)
a) \(x^3+6x^2y+12xy^2+8y^3\)
\(=x^3+3\cdot x^2\cdot2y+2\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
viết mỗi biểu thức sau dưới dạng hiệu hai bình phương:
a) (x+y+4)(x+y-4)
b) (y+2z-3)(y-2z-3)
c) (x-y-6)(x+y-6)
d) (x+2y+3z)(2y+3z-x)
a, \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)
b, \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3+2z\right)\left(y-3-2z\right)=\left(y-3\right)^2-\left(2z\right)^2\)
c, \(\left(x-y-6\right)\left(x+y-6\right)=\left(x-6-y\right)\left(x-6+y\right)=\left(x-6\right)^2-y^2\)
d, \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z+x\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
Viết các biểu thức sau dưới dạng bình phương của một tổng
a) x2 + 3x +1
b) x2 + y2 + 2xy
c) 9x2 +12x +4
d) -4x2 - 9 - 12x
a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)
\(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+y^2+2xy=\left(x+y\right)^2\)
c) \(9x^2+12x+4=\left(3x+2\right)^2\)
d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)
Viết lại biểu thức sau dưới dạng bình phương của một tổng hoặc hiệu:
4x4 - 4x2 + 1