Cho đa thức f(x)= ax3+2bx2+3cx+4d với a,b,c,d nguyên.
Chứng minh rằng: không thể đồng thời tồn tại f(7)=73 và f(3)=58.
''Giúp mình với các bạn ơi!''
Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d với các hệ số a, b, c, d là các số nguyên.
Chứng minh rằng không thể đồng thời tồn tại f(7) = 73 và f(3) = 58
f(x)=ax3+2bx2+3cx+4d
f(7)=a73+2b72+3c7+4d
=343a+98b+21c+4d
f(3)=a33+2b32+3c3+4d
=27a+18b+9c+4d
Giả sử cùng tồn tại f(7)=73;f(3)=58
=>f(7)+f(3)=(343a+98b+21c+4d)+(27a+18b+9c+4d)
=343a+98b+21c+4d+27a+18b+9c+4d
=(343a+27a)+(98b+18b)+(21c+9c)+(4d+4d)
=(370a+116b+30c+8d)⋮2
mà 73+58=131\(⋮̸\)2(vô lý)
=> không thể cùng tồn tại f(7)=73;f(3)=58 với f(x)=ax3+2bx2+3cx+4d
đề bài: Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên. Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.
đáp án :
f(x)=ax3+2bx2+3cx+4d
f(7)=a73+2b72+3c7+4d
=343a+98b+21c+4d
f(3)=a33+2b32+3c3+4d
=27a+18b+9c+4d
Giả sử cùng tồn tại f(7)=73;f(3)=58
=>f(7)+f(3)=(343a+98b+21c+4d)+(27a+18b+9c+4d)
=343a+98b+21c+4d+27a+18b+9c+4d
=(343a+27a)+(98b+18b)+(21c+9c)+(4d+4d)
=(370a+116b+30c+8d)⋮2
mà 73+58=131
⋮
/
2(vô lý)
=> không thể cùng tồn tại f(7)=73;f(3)=58 với f(x)=ax3+2bx2+3cx+4d
có đúng ko mn oi =))))
mik ngu toán nhưng chắc đúng á :"))
vuốt tiếp đêyyy
;))
tiếp nữa đêy
tiếp đêyyyy
tiếp tiếp
tiếp đêy
nói vậy chớ mik hơm biết :))
Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên . Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.
mình cần gấp!
Lời giải:
Giả sử tồn tại điều như đề nói.
$f(7)=343a+98b+21c+4d=72$
$f(3)=27a+18b+9c+4d=42$
$\Rightarrow f(7)-f(3)=316a+80b+12c=30$
$\Rightarrow 4(79a+20b+3c)=30$
$\Rightarrow 79a+20b+3c=\frac{30}{4}\not\in\mathbb{Z}$
(vô lý vì $a,b,c$ là các số nguyên)
Do đó điều giả sử là sai, tức là không tồn tại $f(7)=72$ và $f(3)=42$
Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên. Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.
Giả sử tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\). Ta có:
\(\left\{{}\begin{matrix}f\left(7\right)=a.7^3+2.b.7^2+3.c.7+4d=343a+98b+21c+4d\\f\left(3\right)=a.3^3+2.b.3^3+3.c.3+4d=27a+18b+9c+4d\end{matrix}\right.\)
\(\Rightarrow f\left(7\right)+f\left(3\right)=\left(343a+27a\right)+\left(98b+18b\right)+\left(21c+9c\right)+\left(4d+4d\right)=370a+116b+30c+8d⋮̸2\)
Mà \(f\left(7\right)+f\left(3\right)=72+42=112⋮2\)
Từ hai điều trên suy ra giả thiết sai.
Vậy không thể tồn tại \(f\left(7\right)=72\) và \(f\left(3\right)=42\)
Nc chuyên đề z:
Bài 1: Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên. Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.
\(f\left(x\right)=ax^3+2bx^2+3cx+4d\)
\(f\left(7\right)=a\cdot7^3+2b\cdot7^2+3c\cdot7+4d\)
\(=343a+98b+21c+4d\)
\(f\left(3\right)=a\cdot3^3+2b\cdot3^2+3c\cdot3+4d\)
\(=27a+18b+9c+4d\)
\(f\left(7\right)+f\left(3\right)=343a+98b+21c+4d+27a+18b+9c+4d\)
\(=370a+116b+30c+8d\)
\(=2\left(185a+58b+15c+4d\right)⋮2\)
mà f(7)+f(3)=72+42=114 chia hết cho 2
nên có tồn tại f(7)=72 và f(3)=42 nha bạn
Cho đa thức F(x) = ax^3+2bx^2+3cx+4d
với các hệ số a,b,c là các số nguyên. chứng minh rằng ko thể đồng thời tồn tại f(7)= 73 và f(3)=58
Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)
Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)
Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :
\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)
\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)
Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k
\(f(7)-f(3)=2k=15\)
Mà 15 ko chia hết cho 2 , suy ra giả sử sai
=> đpcm
cho f(x) = ax^ + 2bx^2 + 3cx + 4d với a;b;c;d thuộc Z. CMR không thể đồng thời tồn tại f(7) = 73; f(3) = 58
cho f(x) = ax^ + 2bx^2 + 3cx + 4d với a;b;c;d thuộc Z. CMR không thể đồng thời tồn tại f(7) = 73; f(3) = 58
Cho đa thức \(f\left(x\right)=ax^3+2bx^2+3cx+4d\) với các hệ số a, b, c, d là số nguyên. CMR không thể đồng thời tồn tại \(f\left(7\right)=73\) và \(f\left(3\right)=58\)
: Giả sử tồn tại đồng thời f(7) = 73 và f(3) = 58 :
=> f(7) = a.7^3 + b.7^2 + c.7 + d = 343a + 49b + 7c + d
f(3) = a.3^3 + b.3^2 + c.3 + d = 27a + 9b + 3c + d
=> f(7) + f(3) = 343a + 27a + 49b + 9b + 7c + 3c + d + d
=> f(7) + f(3) = 370a + 58b + 10c + 2d ⋮ 2 (vì a, b, c, d là các số nguyên)
=> f(7) + f(3) ⋮ 2
Nhưng theo giả thiết thì f(7) + f(3) = 73 + 58 = 131 không chia hết cho 2.
=> giả thiết nêu ra là vô lý.
Vậy với f(x) = ax^3 + bx^2 + cx + d (a, b, c, d là các số nguyên) thì không thể tồn tại f(7) = 73 và f(3) = 58.