Cho hình lập phương abcd.a'b'c'd' có cạnh bằng 2a tính góc giữa CC' và mặt phẳng AB'C'
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a, gọi α là góc giữa đường thẳng AB' và mặt phẳng (BB'D'D). Tính sin α .
A. 3 4 .
B. 3 2 .
C. 3 5 .
D. 1 2 .
Đáp án D
Gọi I là giao điểm của AC và BD
A I ⊥ B D A I ⊥ B B ' ⇒ A I ⊥ ( B B ' D ' D ) ⇒ B’I là hình chiếu vuông góc của AB’ lên (BB’D’D)
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a, gọi α là góc giữa đường thẳng A ' B và mặt phẳng B B ' D ' D . Tính sin α .
A. 3 5 .
B. 3 2 .
C. 1 2 .
D. 3 4 .
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a, gọi α là góc giữa đường thẳng A ' B và mặt phẳng B B ' D ' D . Tính sin α
A. 3 5
B. 3 2
C. 1 2
D. 3 4
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Sin của góc tạo bởi giữa hai mặt phẳng (BDA') và (ABCD) bằng
A. 3 3
B. 6 3
C. 3 4
D. 6 4
Gọi
Ta chứng minh được
Từ (1) và (2) suy ra
Vậy
Chọn B
Cho hình lập phương ABCD.A'B'C'D' cạnh 2a, gọi M là trung điểm của BB' và P thuộc cạnh sao cho D P = 1 4 D D ' . Mặt phẳng (AMP) cắt CC' tại N. Thể tích khối đa diện AMNPBCD bằng
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Số đo của góc giữa hai mặt phẳng (BA’C) và (DA’C) là
A. 90 0
B. 60 0
C. 30 0
D. 45 0
Cho hình lập phương ABCD.A'B'C'D' cạnh 2a, gọi M là trung điểm của BB' và P thuộc cạnh DD' sao cho D P = 1 4 D D ' . Mặt phẳng (AMP) cắt CC' tại N. Thể tích khối đa diện AMNPBCD bằng
A. V = 2 a 3
B. V = 3 a 3
C. V = 9 a 3 4
D. V = 11 a 3 3
Cho hình lập phương A B C D . A ' B ' C ' D ' cạnh 2a, gọi M là trung điểm của B B ' và P thuộc cạnh D D ' sao cho D P = 1 4 D D ' . Mặt phẳng A M P cắt C C ' tại N. Thể tích khối đa diện A M N P B C D bằng
A. V = 2 a 3
B. V = 3 a 3
C. V = 9 a 3 4
D. V = 11 a 3 3
Đáp án B
Áp dụng công thức tính nhanh, ta có V A M P B C D V A B C D . A ' B ' C ' D ' = 1 2 B M B B ' + D P D D ' = 3 8 ⇒ V A M P B C D = 3 a 3 .
Cho hình lập phương A B C D . A ' B ' C ' D ' có các cạnh bằng 1. M là trung điểm CC'. Tính góc giữa hai đường thẳng AD' và BM.
A. 45 °
B. 18 ° 26 '
C. 26 ° 33 '
D. 18 ° 43 '