Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
THI QUYNH HOA BUI
Xem chi tiết
Hoàng Nguyên Long
Xem chi tiết
Lưu Phương Thảo
Xem chi tiết
Libra Nguyễn
Xem chi tiết
mao thùy an
Xem chi tiết
mao thùy an
22 tháng 3 2019 lúc 12:35

MIK Cần gấp nhanh nhá

Bùi Anh Khoa
Xem chi tiết
Hoa Cửu
2 tháng 9 2020 lúc 14:40

Bài 1 :                                                      Bài giải

Hình tự vẽ //                                       

a) Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC = 2 . AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

Từ (1) ; (2) ta được DOC + AOC = 180

b) Góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

Ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

Khách vãng lai đã xóa
D.Khánh Đỗ
Xem chi tiết
Nguyễn Trọng Nghĩa
Xem chi tiết
Bắc Băng Dương
19 tháng 3 2016 lúc 11:05

Từ giả thiết suy ra với mọi O đều có ?

\(\overrightarrow{OG}=\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)\)  và  \(\overrightarrow{OG_1}=\frac{1}{3}\left(\overrightarrow{OA}_1+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\)

Mà :

\(\overrightarrow{OG_2=}\frac{1}{3}.\left(\overrightarrow{OGa}+\overrightarrow{OG_b}+\overrightarrow{OG_c}\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB_1}+\overrightarrow{OC_1}\right)+\frac{1}{3}\left(\overrightarrow{OB}+\overrightarrow{OC_1}+\overrightarrow{OA_1}\right)+\frac{1}{3}\left(\overrightarrow{OC}+\overrightarrow{OA_1}+\overrightarrow{OB_1}\right)\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\frac{2}{3}\left(\overrightarrow{OA_1}+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\right)\)

        \(=\frac{1}{3}\overrightarrow{OG}+\frac{2}{3}\overrightarrow{OG_1}\)

Suy ra :

\(3\overrightarrow{OG_2}=\overrightarrow{OG}+2\overrightarrow{OG_1}\)  với mọi O. Điều này có nghĩa là \(G,G_1,G_2\) thẳng hàng => Điều phải chứng minh

Đào Ngọc Quang
Xem chi tiết
Ben 10
11 tháng 8 2017 lúc 16:58

 Gợi ý : Theo đề ra thì O là

giao điểm của 3 đường phân giác trong của tg ABC nên: 
AE = AF (1) 
BD = BF mà BM = BA => DM = AF (2) 
CD = CE mà CN = CA => DN = AE (3) 
Từ (1); (2); (3) => DM = DN mà OD _I_ MN

=> tg MON cân tại O