Cho tam giác ABC có ba góc nhọn và điểm M tùy ý trong tam giác. Gọi A1, B1, C1 là các điểm đối xứng với M lần lượt qua trung điểm của các cạnh BC, CA, AB. a) Chứng minh AA1, BB1, CC1 đồng quy
b) xác định vị trí của M để hình lục giác AB1CA1BC1 có các cạnh bằng nhau
Cho tam giác ABC trên các tia đối của AB, BC, AC lây các điểm tương ứng A1,B1,C1 sao cho AA1=AB, BB1=BC, CC1=AC. Cm: Tam giác ABC và tam giác A1B1C1 có cùng trọng tâm
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác abc vuông cân tại a trên cạnh ab lấy điểm d trên cạnh ac lấy điểm e sao cho ad=ae qua d kẻ các đường thẳng vuông với be cắt bc theo thứ tự i và k chứng minh ik=kc theo 2 cách
C1:M là gao điểm của ID và CA chứng minh AM=AC
C2:qua C kẻ đường thẳng vuông góc với BE cắt BA ở N chứng minh AD=AN
giúp mk vẽ hình nữa ạ
Cho tam giác ABC có BC là cạnh lớn nhất. O là giao điểm của các đường phân giác. Trên cạnh BC lấy điểm M và N sao cho BM=BA;CN=CA. gọi D.E.F lần lượt là các hình chiếu của O trên BC,CA,AB. Chứng minh rằng :
a) Các tứ giác AMDF và AEDN là các hình thag cân và MF=NE
b) Tam giác OMN cân
Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm).
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm).
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30.
Bài 4: (6,0 điểm).
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng
(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2
Cho tam giác ABC. Qua A vẽ đường thẳng xy song song BC. Trên cạnh BC lấy một điểm D. Vẽ DE song song AB, DF song song AC (E,F thuộc xy). Gọi M là giao điểm của AB và DF. Gọi N là giao điểm của AC và DE. Gọi O là giao điểm của AD và CF. Chứng minh rằng:
a) Ba điểm B,O,E thẳng hàng.
b) Ba điểm M,O,N thẳng hàng.
Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy các điểmP, Q sao cho BP = CQ. Gọi M, N lần lượt là trung điểm của các đoạn thẳng BC, PQ. Đường thẳng MN cắt các đường thẳng AB và AC thứ tự tại I và K. Chứng minh rằng tam giác AIK cân.
Cho tam giác ABC. Lấy các điểm D,E theo thứ tự thuộc tia đối của các tia BA, CA sao cho BD=CE=BC. Gọi O là giao điểm của BE và CD. Qua O vẽ đường thẳng song song với tia phân giác của góc A, đường thẳng này cắt AC ở K. Chứng minh rằng AB=CK