Tìm GTLN của đa thức \(-16x^2-8x+10\)
Tìm GTNN của đa thức \(16x^2+8x+10\)
tìm nghiện của đa thức 8x³+16x
tìm nghiệm của đa thức\(16x^2+8x+1\)
Tìm GTLN của
\(P=\dfrac{3x^2-16x+50}{x^2-8x+22}\)
Đề chắc chắn đúng chứ bạn?
Kết quả max ra xấu và phải sử dụng miền giá trị của lớp 9 để tìm
Lớp 8 chắc là chưa học
thu gọn đa thức sau rồi tìm bậc của nó
A (x)=43x-(52x^2+34x^2-8x^4)-(8x^4+16x^3-42x^2+43x)+19
\(A\left(x\right)=43x-\left(52x^2+34x^2-8x^4\right)-\left(8x^4+16x^3-42x^2+43x\right)+19\)
\(\Leftrightarrow A\left(x\right)=43x-86x^2+8x^4-16x^3+42x^2-43x+19\)
\(\Leftrightarrow A\left(x\right)=-16x^3-44x^2+19\)
Bậc là: 3
Bài 8.Tìm nghiệm của các đa thức sau:
a) 𝑥2 -8x +7 c) 3𝑥2 +4x – 4 e) 5𝑥2 -16x +3
b) 𝑥2 + 𝑥 - 20 d) 3𝑥2 - 4𝑥 - 7 f) 𝑥2 + 3𝑥 - 10
a) Ta có: \(x^2-8x+7=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
b) Ta có: \(x^2+x-20=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
c) Ta có: \(3x^2+4x-4=0\)
\(\Leftrightarrow3x^2+6x-2x-4=0\)
\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) Ta có: \(3x^2-4x-7=0\)
\(\Leftrightarrow3x^2-7x+3x-7=0\)
\(\Leftrightarrow\left(3x-7\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-1\end{matrix}\right.\)
e) Ta có: \(5x^2-16x+3=0\)
\(\Leftrightarrow5x^2-15x-x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
f) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a)
\(x^2-8x+7=0\text{⇔}\text{⇔}x^2-7x-x-7=\left(x-7\right)\left(x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
Vậy nghiệm của đa thức : \(S=\left\{1;7\right\}\)
c)
\(3x^2+4x-4=0\text{⇔}3x^2+6x-2x-4=\left(3x-2\right)\left(x+2\right)=0\text{⇔}\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
Vậy nghiệm của đa thức : \(S=\left\{\dfrac{2}{3};-2\right\}\)
b)
\(x^2+x-20=0⇔\left(x-4\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
d)
\(3x^2-4x-7=0\text{⇔}\left(3x-7\right)\left(x+1\right)=0\text{⇔}\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{3}\end{matrix}\right.\)
e)
\(5x^2-16x+3\text{⇔}\left(x-3\right)\left(5x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
f)
\(x^2+3x-10=0\text{⇔}\left(x-2\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(\)
Tìm GTLN của đa thức
1) f(x)= -3x^2 -12x +5
2)f(x)= -8x^2 +20x
1) \(f\left(x\right)=-3x^2-12x+5\)
\(\Rightarrow f\left(x\right)=-3\left(x^2+4x\right)+5\)
\(\Rightarrow f\left(x\right)=-3\left(x^2+4x+4\right)+5+12\)
\(\Rightarrow f\left(x\right)=-3\left(x+2\right)^2+17\le17\left(-3\left(x+2\right)^2\le0,\forall x\right)\)
\(\Rightarrow GTLN\left(f\left(x\right)\right)=17\left(tạix=-2\right)\)
2) \(f\left(x\right)=-8x^2+20x\)\
\(\Rightarrow f\left(x\right)=-8\left(x^2+\dfrac{5}{2}x\right)\)
\(\Rightarrow f\left(x\right)=-8\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{25}{2}\)
\(\Rightarrow f\left(x\right)=-8\left(x+\dfrac{5}{4}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\left(-8\left(x+\dfrac{5}{4}\right)^2\le0,\forall x\right)\)
\(\Rightarrow GTLN\left(f\left(x\right)\right)=\dfrac{25}{2}\left(tạix=-\dfrac{5}{4}\right)\)
Phân tích đa thức nhân tử:
c, 16x^2 -9
a, 16x^2-8x+1
\(16x^2-9=\left(4x-3\right)\left(4x+3\right)\)
\(16x^2-8x+1=\left(4x-1\right)^2\)
16x2−9=(4x−3)(4x+3)16x2−9=(4x−3)(4x+3)
16x2−8x+1=(4x−1)2
-Tìm GTNN của biểu thức:
+) A= \(4x^2-12x+15\)
-Tìm GTLN của biểu thức:
+) B= \(-x^2+4x+4\)
+) C=\(4-16x^2-8x\)
1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)
Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)
Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5
2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)
\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của B là 8 khi x = 2
2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)
\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)
Đẳng thức xảy ra khi: 4x + 1 = 0 => x = -0,25
Vậy giá trị lớn nhất của C là 5 khi x = -0,25