cho x,y là các số dương thỏa: 18/x+2/y=1. tìm gtnn của biểu thức P=x+y
Cho x,y là các số dương thỏa 18/x +2/y = 1. Tìm GTNN của A = x + y
\(1=2\left(\dfrac{9}{x}+\dfrac{1}{y}\right)\ge2.\dfrac{\left(3+1\right)^2}{x+y}=\dfrac{32}{x+y}\)
\(\Rightarrow x+y\ge32\)
\(A_{min}=32\) khi \(\left(x;y\right)=\left(24;8\right)\)
Cho x,y là các số dương thỏa mãn x + y = 1. Tìm GTNN của biểu thức :
\(A=\dfrac{1}{x}+\dfrac{4}{y}\)
\(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)
Cho các số dương x, y thỏa mãn x.y = 1. Tìm GTNN của biểu thức:
P = \[(x + y + 1).({x^2} + {y^2}) + \frac{4}{{x + y}}\]
Cho x,y là các số nguyên dương thỏa mãn x+y=2007. Tìm GTLN,GTNN của biểu thức: F=x(x2+y)+y(y2+x)
F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy
=(x+y)3-xy(3x+3y-2)
=20073-xy[3.2007-2]
làm tiếp đi
chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)
Đầu tiên tìm GTLN, GTNN của xy.
Không mất tính tổng quát giả sử:
\(x\ge y+1\)
\(\Leftrightarrow x-y-1\ge0\)
\(\Leftrightarrow x-y-1+xy\ge xy\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)
Từ đây ta suy được:
\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)
Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)
Ta lại có:
\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)
Thế vô là xong
Cho các số thực dương x,y,z thỏa mãn x(x+1)+y(y+1)+z(z+1) <=18
Tìm GTNN của biểu thức \(B=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
x(x+1)+y(y+1)+z(z+1) \(\le18\)
<=> \(x^2+y^2+z^2+\left(x+y+z\right)\le18\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow54\ge\left(x+y+z\right)^2+3\left(x+y+z\right)\)
\(\Leftrightarrow-9\le x+y+z\le6\)
\(\Rightarrow0\le x+y+z\le6\)
\(\hept{\begin{cases}\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\\\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\\\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\end{cases}}\Rightarrow B+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)
\(\Rightarrow B\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)
vậy giá trị nhỏ nhất cho B=3/5 khi x=y=z=2
Hai Ngox Xem laị từ dòng thứ 2 và dòng thứ 3 xuống dưới. Nhiều lỗi quá!
Cô Chi giúp em với!!!
Cho x,y là các số thực dương thỏa mãn \(x^2+y^2=1\). Tìm GTNN của biểu thức :
\(P=x+\frac{1}{x}+\frac{1}{y}+y\)
Lời giải
Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)
Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)
\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)
\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)
Vậy ...
Cho x,y,z là các số thực dương thỏa mãn x+y+z=1. Tìm GTNN của biểu thức
\(F=\text{∑}\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\)
lại bị trùng rồi quỳnh ơi , https://olm.vn/hoi-dap/detail/76355556031.html
Câu hỏi của Con Heo - Toán lớp 8 - Học trực tuyến OLM
Cho các số thực dương x, y thỏa mãn \(x+y\le2\). Tìm GTNN của biểu thức \(P=\dfrac{1}{xy}+\dfrac{8}{x+2y+3}\)
Cho x, y là các số thực dương thỏa mãn x+y= 2019. Tìm GTNN của biểu thức P= \(\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}\)
Giúp mk vs nhé!
\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)
\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)
\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)
\(\Rightarrow P\ge\sqrt{4038}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)
Ta có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
Lại có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)
\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)
\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)
Dấu = khi \(x=y=\dfrac{2019}{2}\)