\(1=2\left(\dfrac{9}{x}+\dfrac{1}{y}\right)\ge2.\dfrac{\left(3+1\right)^2}{x+y}=\dfrac{32}{x+y}\)
\(\Rightarrow x+y\ge32\)
\(A_{min}=32\) khi \(\left(x;y\right)=\left(24;8\right)\)
\(1=2\left(\dfrac{9}{x}+\dfrac{1}{y}\right)\ge2.\dfrac{\left(3+1\right)^2}{x+y}=\dfrac{32}{x+y}\)
\(\Rightarrow x+y\ge32\)
\(A_{min}=32\) khi \(\left(x;y\right)=\left(24;8\right)\)
cho các số dương x, y thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}=2\)
Tìm GTNN của A= \(5x^2+y-4xy+y^2\)
cho x,y là các số dương thỏa man: x+y=1
Tìm GTNN của B=\(\left(\text{x}+\dfrac{1}{\text{x}}\right)^{2^{ }}+\left(y+\dfrac{1}{y}\right)^2\)
Cho x, y là các số thực dương thỏa mãn x + \(\dfrac{1}{y}\) = 1. Tìm GTNN của P = \(\dfrac{x}{y}+\dfrac{y}{x}\)
1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
Tìm GTNN của A=x+y biết x,y là các số dương thỏa mãn \(\frac{a}{x}+\frac{b}{y}=1\)(a và b là các hằng số dương)
cho x, y là các số thực dương thỏa mãn x+y=4
tìm GTNN của : \(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
cho x,y là 2 số dương thỏa x+y=10. Tìm GTNN của S=1/x+1/y
Cho x,y là 2 số dương thỏa mãn x+y=1.Tìm GTNN của A =\(\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
Cho các số dương x, y thỏa mãn x.y = 1. Tìm GTNN của biểu thức:
P = \[(x + y + 1).({x^2} + {y^2}) + \frac{4}{{x + y}}\]