So sánh các phân số 100/101+101/102 và 100+101/101+102
so sánh các phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)
\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)
mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)
nên A<B
tìm 10 phân số nằm giữa 2 phân số 100/101 và 101/102
Lời giải:
$\frac{100}{101}=\frac{10200}{10302}=\frac{1020000}{1030200}$
$\frac{101}{102}=\frac{10201}{10302}=\frac{1020100}{1030200}$
10 phân số nằm giữa 2 phân số trên là:
$\frac{1020001}{1030200}, \frac{1020002}{1030200}, \frac{1020003}{1030200}, \frac{1020004}{1030200}, \frac{1020004}{1030200}, \frac{1020005}{1030200}, \frac{1020006}{1030200}, \frac{1020007}{1030200}, \frac{1020008}{1030200}, \frac{1020009}{1030200}, \frac{1020010}{1030200}$
So sánh: 1/100+1/101+1/102+...+1/200 và 0,499
Ta xét: \(\dfrac{1}{100} + \dfrac{1}{101} + \dfrac{1}{102}...+ \dfrac{1}{200}\)
\(\dfrac{1}{100} > \dfrac{1}{200}\)
\(\dfrac{1}{101}>\dfrac{1}{200}\)
.
.
.
\(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow\)\(\dfrac{1}{100} + \dfrac{1}{101} + \dfrac{1}{102} +...+\dfrac{1}{200}\)(có 101 phân số) > \(100.\dfrac{1}{200} = \dfrac{1}{2}\)
Lời giải:
\(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{101}{200}>\frac{100}{200}=0,5>0,499\)
hãy viết 10 phân số khác nhau nằm giữa 2 phân số 100 phần 101 và 101 phần 102
đặt M=101.102.11=113322
Ta có:
100/101=(100.102.11)/(101.102.11)
=112200/M
101/102=(101.101.11)/(101.102.11)
=112211/M
--->10 phân số trong khoảng này là:
112201/M; 112202/M; 112203/M; 112204/M; 112205/M; 112206/M; 112207/M; 112208/M; 112209/M; 112210/M;
Chịch nhau thì trả lời... Bướm bị Chim sọc lồn
cho các số thực dương thỏa mãn \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102},tính\) \(A=a^{2015}+b^{2015}\)
Theo đề ra, ta có:
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Leftrightarrow\left(a^{100}+b^{100}\right).\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)
\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)+a^{202}+b^{202}=a^{202}+b^{202}+2a^{101}.b^{101}\)
\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)=2a^{101}.b^{101}\)
\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2-2ab\right)=0\)
\(\Leftrightarrow a=b=0\)
\(\Rightarrow a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{100}=a^{101}\)
\(\Leftrightarrow a^{100}.\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
\(\Rightarrow A=a^{2015}+b^{2015}=1+1=2\).
\(Từ:\) \(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Leftrightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)
\(và\) \(a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Leftrightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0 \left(2\right)\)
\(Từ\left(1\right)\) \(và\) \(\left(2\right)\)
\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)-a^{100}\left(a-1\right)-b^{100}\left(b-1\right)=0\)
\(\Leftrightarrow a^{100}\left(a-1\right)^2+b^{100}\left(b-1\right)^2\)
\(Do\) \(a,b>0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Rightarrow A=1+1=2\)
em không chắc cho lắm ạ
cho các số thực dương a và b tm \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\) tính giá trị của biểu thức \(P=a^{2014}+b^{2015}\)
Ta có đẳng thức: \(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\) với mọi số a,b
Kết hợp với: \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow1=\left(a+b\right)-ab\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow1+b^{100}=1+b^{101}=1+b^{102}\Rightarrow b=1\\b=1\Rightarrow1+a^{100}=1+a^{101}=1+a^{102}\Rightarrow a=1\end{matrix}\right.\)
Do đó: \(P=a^{2014}+b^{2014}=1^{2004}+1^{2005}=2\)
A=100/99+101/100; B= 102/101+103/102
A=100/99+101/100=10000/9900+9999/9900=19999/9900.
B=102/101+103/102=1040/10302+10403/10302=11443/10302
So sánh 2 phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)
\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)
a So Sánh : S = 1/101 + 1/102 + 1/103 + ... + 1/109 với 9/100
b Chứng tỏ S không phải là số tự nhiên biết : S = 1/101 + 1/102 + 1/103 + ... + 1/200
b) Ta có: \(\frac{1}{101}>0\)
\(\frac{1}{102}>0\)
...............,....
\(\frac{1}{200}>0\)
\(\Rightarrow S>0\left(1\right)\)
Lại có: \(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
......................
\(\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow S< \frac{1}{100}.100\)
\(\Rightarrow S< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< S< 1\)
Vậy S ko là số tự nhiên
a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100
=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100
=>S<9/100
b,ta thấy S luôn >0
S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1
=>S<1
=>0<S<1 => S không phải số tự nhiên
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};\frac{1}{103}< \frac{1}{100};......;\frac{1}{109}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{109}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\)
\(\Rightarrow S< 9\cdot\frac{1}{100}\)
\(\Rightarrow S< \frac{9}{100}\)
Vậy \(S< \frac{9}{100}\)